/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * See the paper "On Randomness" by Ben Laurie for an explanation of this PRNG. * http://www.apache-ssl.org/randomness.pdf * XXX: Is there a formal proof of this PRNG? Couldn't we use the more popular * Mersenne Twister PRNG (and BSD licensed)? */ #include "apr.h" #include "apr_pools.h" #include "apr_random.h" #include "apr_thread_proc.h" #include #ifdef min #undef min #endif #define min(a,b) ((a) < (b) ? (a) : (b)) #define APR_RANDOM_DEFAULT_POOLS 32 #define APR_RANDOM_DEFAULT_REHASH_SIZE 1024 #define APR_RANDOM_DEFAULT_RESEED_SIZE 32 #define APR_RANDOM_DEFAULT_HASH_SECRET_SIZE 32 #define APR_RANDOM_DEFAULT_G_FOR_INSECURE 32 #define APR_RANDOM_DEFAULT_G_FOR_SECURE 320 typedef struct apr_random_pool_t { unsigned char *pool; unsigned int bytes; unsigned int pool_size; } apr_random_pool_t; #define hash_init(h) (h)->init(h) #define hash_add(h,b,n) (h)->add(h,b,n) #define hash_finish(h,r) (h)->finish(h,r) #define hash(h,r,b,n) hash_init(h),hash_add(h,b,n),hash_finish(h,r) #define crypt_setkey(c,k) (c)->set_key((c)->data,k) #define crypt_crypt(c,out,in) (c)->crypt((c)->date,out,in) struct apr_random_t { apr_pool_t *apr_pool; apr_crypto_hash_t *pool_hash; unsigned int npools; apr_random_pool_t *pools; unsigned int next_pool; unsigned int generation; apr_size_t rehash_size; apr_size_t reseed_size; apr_crypto_hash_t *key_hash; #define K_size(g) ((g)->key_hash->size) apr_crypto_hash_t *prng_hash; #define B_size(g) ((g)->prng_hash->size) unsigned char *H; unsigned char *H_waiting; #define H_size(g) (B_size(g)+K_size(g)) #define H_current(g) (((g)->insecure_started && !(g)->secure_started) \ ? (g)->H_waiting : (g)->H) unsigned char *randomness; apr_size_t random_bytes; unsigned int g_for_insecure; unsigned int g_for_secure; unsigned int secure_base; unsigned int insecure_started:1; unsigned int secure_started:1; apr_random_t *next; }; static apr_random_t *all_random; APR_DECLARE(void) apr_random_init(apr_random_t *g,apr_pool_t *p, apr_crypto_hash_t *pool_hash, apr_crypto_hash_t *key_hash, apr_crypto_hash_t *prng_hash) { unsigned int n; g->apr_pool = p; g->pool_hash = pool_hash; g->key_hash = key_hash; g->prng_hash = prng_hash; g->npools = APR_RANDOM_DEFAULT_POOLS; g->pools = apr_palloc(p,g->npools*sizeof *g->pools); for (n = 0; n < g->npools; ++n) { g->pools[n].bytes = g->pools[n].pool_size = 0; g->pools[n].pool = NULL; } g->next_pool = 0; g->generation = 0; g->rehash_size = APR_RANDOM_DEFAULT_REHASH_SIZE; /* Ensure that the rehash size is twice the size of the pool hasher */ g->rehash_size = ((g->rehash_size+2*g->pool_hash->size-1)/g->pool_hash->size /2)*g->pool_hash->size*2; g->reseed_size = APR_RANDOM_DEFAULT_RESEED_SIZE; g->H = apr_pcalloc(p,H_size(g)); g->H_waiting = apr_pcalloc(p,H_size(g)); g->randomness = apr_palloc(p,B_size(g)); g->random_bytes = 0; g->g_for_insecure = APR_RANDOM_DEFAULT_G_FOR_INSECURE; g->secure_base = 0; g->g_for_secure = APR_RANDOM_DEFAULT_G_FOR_SECURE; g->secure_started = g->insecure_started = 0; g->next = all_random; all_random = g; } static void mix_pid(apr_random_t *g,unsigned char *H,pid_t pid) { hash_init(g->key_hash); hash_add(g->key_hash,H,H_size(g)); hash_add(g->key_hash,&pid,sizeof pid); hash_finish(g->key_hash,H); } static void mixer(apr_random_t *g,pid_t pid) { unsigned char *H = H_current(g); /* mix the PID into the current H */ mix_pid(g,H,pid); /* if we are in waiting, then also mix into main H */ if (H != g->H) mix_pid(g,g->H,pid); /* change order of pool mixing for good measure - note that going backwards is much better than going forwards */ --g->generation; /* blow away any lingering randomness */ g->random_bytes = 0; } APR_DECLARE(void) apr_random_after_fork(apr_proc_t *proc) { apr_random_t *r; for (r = all_random; r; r = r->next) mixer(r,proc->pid); } APR_DECLARE(apr_random_t *) apr_random_standard_new(apr_pool_t *p) { apr_random_t *r = apr_palloc(p,sizeof *r); apr_random_init(r,p,apr_crypto_sha256_new(p),apr_crypto_sha256_new(p), apr_crypto_sha256_new(p)); return r; } static void rekey(apr_random_t *g) { unsigned int n; unsigned char *H = H_current(g); hash_init(g->key_hash); hash_add(g->key_hash,H,H_size(g)); for (n = 0 ; n < g->npools && (n == 0 || g->generation&(1 << (n-1))) ; ++n) { hash_add(g->key_hash,g->pools[n].pool,g->pools[n].bytes); g->pools[n].bytes = 0; } hash_finish(g->key_hash,H+B_size(g)); ++g->generation; if (!g->insecure_started && g->generation > g->g_for_insecure) { g->insecure_started = 1; if (!g->secure_started) { memcpy(g->H_waiting,g->H,H_size(g)); g->secure_base = g->generation; } } if (!g->secure_started && g->generation > g->secure_base+g->g_for_secure) { g->secure_started = 1; memcpy(g->H,g->H_waiting,H_size(g)); } } APR_DECLARE(void) apr_random_add_entropy(apr_random_t *g,const void *entropy_, apr_size_t bytes) { unsigned int n; const unsigned char *entropy = entropy_; for (n = 0; n < bytes; ++n) { apr_random_pool_t *p = &g->pools[g->next_pool]; if (++g->next_pool == g->npools) g->next_pool = 0; if (p->pool_size < p->bytes+1) { unsigned char *np = apr_palloc(g->apr_pool,(p->bytes+1)*2); memcpy(np,p->pool,p->bytes); p->pool = np; p->pool_size = (p->bytes+1)*2; } p->pool[p->bytes++] = entropy[n]; if (p->bytes == g->rehash_size) { apr_size_t r; for (r = 0; r < p->bytes/2; r+=g->pool_hash->size) hash(g->pool_hash,p->pool+r,p->pool+r*2,g->pool_hash->size*2); p->bytes/=2; } assert(p->bytes < g->rehash_size); } if (g->pools[0].bytes >= g->reseed_size) rekey(g); } /* This will give g->B_size bytes of randomness */ static void apr_random_block(apr_random_t *g,unsigned char *random) { /* FIXME: in principle, these are different hashes */ hash(g->prng_hash,g->H,g->H,H_size(g)); hash(g->prng_hash,random,g->H,B_size(g)); } static void apr_random_bytes(apr_random_t *g,unsigned char *random, apr_size_t bytes) { apr_size_t n; for (n = 0; n < bytes; ) { apr_size_t l; if (g->random_bytes == 0) { apr_random_block(g,g->randomness); g->random_bytes = B_size(g); } l = min(bytes-n,g->random_bytes); memcpy(&random[n],g->randomness+B_size(g)-g->random_bytes,l); g->random_bytes-=l; n+=l; } } APR_DECLARE(apr_status_t) apr_random_secure_bytes(apr_random_t *g, void *random, apr_size_t bytes) { if (!g->secure_started) return APR_ENOTENOUGHENTROPY; apr_random_bytes(g,random,bytes); return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_random_insecure_bytes(apr_random_t *g, void *random, apr_size_t bytes) { if (!g->insecure_started) return APR_ENOTENOUGHENTROPY; apr_random_bytes(g,random,bytes); return APR_SUCCESS; } APR_DECLARE(void) apr_random_barrier(apr_random_t *g) { g->secure_started = 0; g->secure_base = g->generation; } APR_DECLARE(apr_status_t) apr_random_secure_ready(apr_random_t *r) { if (!r->secure_started) return APR_ENOTENOUGHENTROPY; return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_random_insecure_ready(apr_random_t *r) { if (!r->insecure_started) return APR_ENOTENOUGHENTROPY; return APR_SUCCESS; }