# 15.8. Math Commands

"Doing the numbers"

factor

Decompose an integer into prime factors.

 ``` bash\$ factor 27417 27417: 3 13 19 37 ```

bc

Bash can't handle floating point calculations, and it lacks operators for certain important mathematical functions. Fortunately, bc comes to the rescue.

Not just a versatile, arbitrary precision calculation utility, bc offers many of the facilities of a programming language.

bc has a syntax vaguely resembling C.

Since it is a fairly well-behaved UNIX utility, and may therefore be used in a pipe, bc comes in handy in scripts.

Here is a simple template for using bc to calculate a script variable. This uses command substitution.

 ``` variable=\$(echo "OPTIONS; OPERATIONS" | bc) ```

Example 15-43. Monthly Payment on a Mortgage

 ``` 1 #!/bin/bash 2 # monthlypmt.sh: Calculates monthly payment on a mortgage. 3  4  5 # This is a modification of code in the 6 #+ "mcalc" (mortgage calculator) package, 7 #+ by Jeff Schmidt 8 #+ and 9 #+ Mendel Cooper (yours truly, the author of the ABS Guide). 10 # http://www.ibiblio.org/pub/Linux/apps/financial/mcalc-1.6.tar.gz [15k] 11  12 echo 13 echo "Given the principal, interest rate, and term of a mortgage," 14 echo "calculate the monthly payment." 15  16 bottom=1.0 17  18 echo 19 echo -n "Enter principal (no commas) " 20 read principal 21 echo -n "Enter interest rate (percent) " # If 12%, enter "12", not ".12". 22 read interest_r 23 echo -n "Enter term (months) " 24 read term 25  26  27  interest_r=\$(echo "scale=9; \$interest_r/100.0" | bc) # Convert to decimal. 28  # ^^^^^^^^^^^^^^^^^ Divide by 100. 29  # "scale" determines how many decimal places. 30  31  interest_rate=\$(echo "scale=9; \$interest_r/12 + 1.0" | bc) 32  33  34  top=\$(echo "scale=9; \$principal*\$interest_rate^\$term" | bc) 35  # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 36  # Standard formula for figuring interest. 37  38  echo; echo "Please be patient. This may take a while." 39  40  let "months = \$term - 1" 41 # ==================================================================== 42  for ((x=\$months; x > 0; x--)) 43  do 44  bot=\$(echo "scale=9; \$interest_rate^\$x" | bc) 45  bottom=\$(echo "scale=9; \$bottom+\$bot" | bc) 46 # bottom = \$((\$bottom + \$bot")) 47  done 48 # ==================================================================== 49  50 # -------------------------------------------------------------------- 51 # Rick Boivie pointed out a more efficient implementation 52 #+ of the above loop, which decreases computation time by 2/3. 53  54 # for ((x=1; x <= \$months; x++)) 55 # do 56 # bottom=\$(echo "scale=9; \$bottom * \$interest_rate + 1" | bc) 57 # done 58  59  60 # And then he came up with an even more efficient alternative, 61 #+ one that cuts down the run time by about 95%! 62  63 # bottom=`{ 64 # echo "scale=9; bottom=\$bottom; interest_rate=\$interest_rate" 65 # for ((x=1; x <= \$months; x++)) 66 # do 67 # echo 'bottom = bottom * interest_rate + 1' 68 # done 69 # echo 'bottom' 70 # } | bc` # Embeds a 'for loop' within command substitution. 71 # -------------------------------------------------------------------------- 72 # On the other hand, Frank Wang suggests: 73 # bottom=\$(echo "scale=9; (\$interest_rate^\$term-1)/(\$interest_rate-1)" | bc) 74  75 # Because . . . 76 # The algorithm behind the loop 77 #+ is actually a sum of geometric proportion series. 78 # The sum formula is e0(1-q^n)/(1-q), 79 #+ where e0 is the first element and q=e(n+1)/e(n) 80 #+ and n is the number of elements. 81 # -------------------------------------------------------------------------- 82  83  84  # let "payment = \$top/\$bottom" 85  payment=\$(echo "scale=2; \$top/\$bottom" | bc) 86  # Use two decimal places for dollars and cents. 87  88  echo 89  echo "monthly payment = \\$\$payment" # Echo a dollar sign in front of amount. 90  echo 91  92  93  exit 0 94  95  96  # Exercises: 97  # 1) Filter input to permit commas in principal amount. 98  # 2) Filter input to permit interest to be entered as percent or decimal. 99  # 3) If you are really ambitious, 100  #+ expand this script to print complete amortization tables.```

Example 15-44. Base Conversion

 ``` 1 #!/bin/bash 2 ########################################################################### 3 # Shellscript: base.sh - print number to different bases (Bourne Shell) 4 # Author : Heiner Steven (heiner.steven@odn.de) 5 # Date : 07-03-95 6 # Category : Desktop 7 # \$Id: base.sh,v 1.2 2000/02/06 19:55:35 heiner Exp \$ 8 # ==> Above line is RCS ID info. 9 ########################################################################### 10 # Description 11 # 12 # Changes 13 # 21-03-95 stv fixed error occuring with 0xb as input (0.2) 14 ########################################################################### 15  16 # ==> Used in ABS Guide with the script author's permission. 17 # ==> Comments added by ABS Guide author. 18  19 NOARGS=65 20 PN=`basename "\$0"` # Program name 21 VER=`echo '\$Revision: 1.2 \$' | cut -d' ' -f2` # ==> VER=1.2 22  23 Usage () { 24  echo "\$PN - print number to different bases, \$VER (stv '95) 25 usage: \$PN [number ...] 26  27 If no number is given, the numbers are read from standard input. 28 A number may be 29  binary (base 2) starting with 0b (i.e. 0b1100) 30  octal (base 8) starting with 0 (i.e. 014) 31  hexadecimal (base 16) starting with 0x (i.e. 0xc) 32  decimal otherwise (i.e. 12)" >&2 33  exit \$NOARGS 34 } # ==> Function to print usage message. 35  36 Msg () { 37  for i # ==> in [list] missing. 38  do echo "\$PN: \$i" >&2 39  done 40 } 41  42 Fatal () { Msg "\$@"; exit 66; } 43  44 PrintBases () { 45  # Determine base of the number 46  for i # ==> in [list] missing... 47  do # ==> so operates on command line arg(s). 48  case "\$i" in 49  0b*) ibase=2;; # binary 50  0x*|[a-f]*|[A-F]*) ibase=16;; # hexadecimal 51  0*) ibase=8;; # octal 52  [1-9]*) ibase=10;; # decimal 53  *) 54  Msg "illegal number \$i - ignored" 55  continue;; 56  esac 57  58  # Remove prefix, convert hex digits to uppercase (bc needs this) 59  number=`echo "\$i" | sed -e 's:^0[bBxX]::' | tr '[a-f]' '[A-F]'` 60  # ==> Uses ":" as sed separator, rather than "/". 61  62  # Convert number to decimal 63  dec=`echo "ibase=\$ibase; \$number" | bc` # ==> 'bc' is calculator utility. 64  case "\$dec" in 65  [0-9]*) ;; # number ok 66  *) continue;; # error: ignore 67  esac 68  69  # Print all conversions in one line. 70  # ==> 'here document' feeds command list to 'bc'. 71  echo `bc < Is a "while loop" really necessary here, 84 # ==>+ since all the cases either break out of the loop 85 # ==>+ or terminate the script. 86 # ==> (Above comment by Paulo Marcel Coelho Aragao.) 87 do 88  case "\$1" in 89  --) shift; break;; 90  -h) Usage;; # ==> Help message. 91  -*) Usage;; 92  *) break;; # first number 93  esac # ==> More error checking for illegal input might be useful. 94  shift 95 done 96  97 if [ \$# -gt 0 ] 98 then 99  PrintBases "\$@" 100 else # read from stdin 101  while read line 102  do 103  PrintBases \$line 104  done 105 fi 106  107  108 exit 0```

An alternate method of invoking bc involves using a here document embedded within a command substitution block. This is especially appropriate when a script needs to pass a list of options and commands to bc.

 ``` 1 variable=`bc << LIMIT_STRING 2 options 3 statements 4 operations 5 LIMIT_STRING 6 ` 7  8 ...or... 9  10  11 variable=\$(bc << LIMIT_STRING 12 options 13 statements 14 operations 15 LIMIT_STRING 16 )```

Example 15-45. Invoking bc using a here document

 ``` 1 #!/bin/bash 2 # Invoking 'bc' using command substitution 3 # in combination with a 'here document'. 4  5  6 var1=`bc << EOF 7 18.33 * 19.78 8 EOF 9 ` 10 echo \$var1 # 362.56 11  12  13 # \$( ... ) notation also works. 14 v1=23.53 15 v2=17.881 16 v3=83.501 17 v4=171.63 18  19 var2=\$(bc << EOF 20 scale = 4 21 a = ( \$v1 + \$v2 ) 22 b = ( \$v3 * \$v4 ) 23 a * b + 15.35 24 EOF 25 ) 26 echo \$var2 # 593487.8452 27  28  29 var3=\$(bc -l << EOF 30 scale = 9 31 s ( 1.7 ) 32 EOF 33 ) 34 # Returns the sine of 1.7 radians. 35 # The "-l" option calls the 'bc' math library. 36 echo \$var3 # .991664810 37  38  39 # Now, try it in a function... 40 hypotenuse () # Calculate hypotenuse of a right triangle. 41 { # c = sqrt( a^2 + b^2 ) 42 hyp=\$(bc -l << EOF 43 scale = 9 44 sqrt ( \$1 * \$1 + \$2 * \$2 ) 45 EOF 46 ) 47 # Can't directly return floating point values from a Bash function. 48 # But, can echo-and-capture: 49 echo "\$hyp" 50 } 51  52 hyp=\$(hypotenuse 3.68 7.31) 53 echo "hypotenuse = \$hyp" # 8.184039344 54  55  56 exit 0```

Example 15-46. Calculating PI

 ``` 1 #!/bin/bash 2 # cannon.sh: Approximating PI by firing cannonballs. 3  4 # This is a very simple instance of a "Monte Carlo" simulation: 5 #+ a mathematical model of a real-life event, 6 #+ using pseudorandom numbers to emulate random chance. 7  8 # Consider a perfectly square plot of land, 10000 units on a side. 9 # This land has a perfectly circular lake in its center, 10 #+ with a diameter of 10000 units. 11 # The plot is actually mostly water, except for land in the four corners. 12 # (Think of it as a square with an inscribed circle.) 13 # 14 # We will fire iron cannonballs from an old-style cannon 15 #+ at the square. 16 # All the shots impact somewhere on the square, 17 #+ either in the lake or on the dry corners. 18 # Since the lake takes up most of the area, 19 #+ most of the shots will SPLASH! into the water. 20 # Just a few shots will THUD! into solid ground 21 #+ in the four corners of the square. 22 # 23 # If we take enough random, unaimed shots at the square, 24 #+ Then the ratio of SPLASHES to total shots will approximate 25 #+ the value of PI/4. 26 # 27 # The reason for this is that the cannon is actually shooting 28 #+ only at the upper right-hand quadrant of the square, 29 #+ i.e., Quadrant I of the Cartesian coordinate plane. 30 # (The previous explanation was a simplification.) 31 # 32 # Theoretically, the more shots taken, the better the fit. 33 # However, a shell script, as opposed to a compiled language 34 #+ with floating-point math built in, requires a few compromises. 35 # This tends to lower the accuracy of the simulation, of course. 36  37  38 DIMENSION=10000 # Length of each side of the plot. 39  # Also sets ceiling for random integers generated. 40  41 MAXSHOTS=1000 # Fire this many shots. 42  # 10000 or more would be better, but would take too long. 43 PMULTIPLIER=4.0 # Scaling factor to approximate PI. 44  45 get_random () 46 { 47 SEED=\$(head -n 1 /dev/urandom | od -N 1 | awk '{ print \$2 }') 48 RANDOM=\$SEED # From "seeding-random.sh" 49  #+ example script. 50 let "rnum = \$RANDOM % \$DIMENSION" # Range less than 10000. 51 echo \$rnum 52 } 53  54 distance= # Declare global variable. 55 hypotenuse () # Calculate hypotenuse of a right triangle. 56 { # From "alt-bc.sh" example. 57 distance=\$(bc -l << EOF 58 scale = 0 59 sqrt ( \$1 * \$1 + \$2 * \$2 ) 60 EOF 61 ) 62 # Setting "scale" to zero rounds down result to integer value, 63 #+ a necessary compromise in this script. 64 # This diminshes the accuracy of the simulation, unfortunately. 65 } 66  67  68 # main() { 69  70 # Initialize variables. 71 shots=0 72 splashes=0 73 thuds=0 74 Pi=0 75  76 while [ "\$shots" -lt "\$MAXSHOTS" ] # Main loop. 77 do 78  79  xCoord=\$(get_random) # Get random X and Y coords. 80  yCoord=\$(get_random) 81  hypotenuse \$xCoord \$yCoord # Hypotenuse of right-triangle = 82  #+ distance. 83  ((shots++)) 84  85  printf "#%4d " \$shots 86  printf "Xc = %4d " \$xCoord 87  printf "Yc = %4d " \$yCoord 88  printf "Distance = %5d " \$distance # Distance from 89  #+ center of lake -- 90  # the "origin" -- 91  #+ coordinate (0,0). 92  93  if [ "\$distance" -le "\$DIMENSION" ] 94  then 95  echo -n "SPLASH! " 96  ((splashes++)) 97  else 98  echo -n "THUD! " 99  ((thuds++)) 100  fi 101  102  Pi=\$(echo "scale=9; \$PMULTIPLIER*\$splashes/\$shots" | bc) 103  # Multiply ratio by 4.0. 104  echo -n "PI ~ \$Pi" 105  echo 106  107 done 108  109 echo 110 echo "After \$shots shots, PI looks like approximately \$Pi." 111 # Tends to run a bit high . . . 112 # Probably due to round-off error and imperfect randomness of \$RANDOM. 113 echo 114  115 # } 116  117 exit 0 118  119 # One might well wonder whether a shell script is appropriate for 120 #+ an application as complex and computation-intensive as a simulation. 121 # 122 # There are at least two justifications. 123 # 1) As a proof of concept: to show it can be done. 124 # 2) To prototype and test the algorithms before rewriting 125 #+ it in a compiled high-level language.```

dc

The dc (desk calculator) utility is stack-oriented and uses RPN ("Reverse Polish Notation"). Like bc, it has much of the power of a programming language.

Most persons avoid dc, since it requires non-intuitive RPN input. Yet, it has its uses.

Example 15-47. Converting a decimal number to hexadecimal

 ``` 1 #!/bin/bash 2 # hexconvert.sh: Convert a decimal number to hexadecimal. 3  4 E_NOARGS=65 # Command-line arg missing. 5 BASE=16 # Hexadecimal. 6  7 if [ -z "\$1" ] 8 then 9  echo "Usage: \$0 number" 10  exit \$E_NOARGS 11  # Need a command line argument. 12 fi 13 # Exercise: add argument validity checking. 14  15  16 hexcvt () 17 { 18 if [ -z "\$1" ] 19 then 20  echo 0 21  return # "Return" 0 if no arg passed to function. 22 fi 23  24 echo ""\$1" "\$BASE" o p" | dc 25 # "o" sets radix (numerical base) of output. 26 # "p" prints the top of stack. 27 # See 'man dc' for other options. 28 return 29 } 30  31 hexcvt "\$1" 32  33 exit 0```

Studying the info page for dc is a painful path to understanding its intricacies. There seems to be a small, select group of dc wizards who delight in showing off their mastery of this powerful, but arcane utility.

 ``` bash\$ echo "16i[q]sa[ln0=aln100%Pln100/snlbx]sbA0D68736142snlbxq" | dc" Bash ```

Example 15-48. Factoring

 ``` 1 #!/bin/bash 2 # factr.sh: Factor a number 3  4 MIN=2 # Will not work for number smaller than this. 5 E_NOARGS=65 6 E_TOOSMALL=66 7  8 if [ -z \$1 ] 9 then 10  echo "Usage: \$0 number" 11  exit \$E_NOARGS 12 fi 13  14 if [ "\$1" -lt "\$MIN" ] 15 then 16  echo "Number to factor must be \$MIN or greater." 17  exit \$E_TOOSMALL 18 fi 19  20 # Exercise: Add type checking (to reject non-integer arg). 21  22 echo "Factors of \$1:" 23 # ------------------------------------------------------------------------------- 24 echo "\$1[p]s2[lip/dli%0=1dvsr]s12sid2%0=13sidvsr[dli%0=1lrli2+dsi!>.]ds.xd1<2"|dc 25 # ------------------------------------------------------------------------------- 26 # Above line of code written by Michel Charpentier . 27 # Used in ABS Guide with permission (thanks!). 28  29  exit 0```

awk

Yet another way of doing floating point math in a script is using awk's built-in math functions in a shell wrapper.

Example 15-49. Calculating the hypotenuse of a triangle

 ``` 1 #!/bin/bash 2 # hypotenuse.sh: Returns the "hypotenuse" of a right triangle. 3 # (square root of sum of squares of the "legs") 4  5 ARGS=2 # Script needs sides of triangle passed. 6 E_BADARGS=65 # Wrong number of arguments. 7  8 if [ \$# -ne "\$ARGS" ] # Test number of arguments to script. 9 then 10  echo "Usage: `basename \$0` side_1 side_2" 11  exit \$E_BADARGS 12 fi 13  14  15 AWKSCRIPT=' { printf( "%3.7f\n", sqrt(\$1*\$1 + \$2*\$2) ) } ' 16 # command(s) / parameters passed to awk 17  18  19 # Now, pipe the parameters to awk. 20  echo -n "Hypotenuse of \$1 and \$2 = " 21  echo \$1 \$2 | awk "\$AWKSCRIPT" 22 # ^^^^^^^^^^^^ 23 # An echo-and-pipe is an easy way of passing shell parameters to awk. 24  25 exit 0 26  27 # Exercise: Rewrite this script using 'bc' rather than awk. 28 # Which method is more intuitive?```