e —
BREACH

ModSecurity Reference Manual

Version 2.1.4 / (November 27, 2007)
Copyright © 2004-2007 Breach Security, Inc. (http://www.breach.com)

Table of Contents

1100 [0 Tox £ o o SRR 7
HTTP TraffiC LOGGING .eeeiueeeeeiiiiiiee ettt ettt e e rntn e e e e nnn e s 7
Real-Time Monitoring and Attack DELECHIONcooiviiiiiiiiieee e 7
Attack Prevention and Just-in-time PatChingccoooiciiiieiiii e 7
FIEXIDIE RUIE ENQINE ...uvuiuiuiuiiiiruiuiuiututeenenenenenenenenesneeneneneesnenrrenersrsrenrnrnenrnrernrrrnrnrnrnrrnnnnnnes 8
Embedded-mode DEPIOYMENToooiiiiiiieiiiie e 8
NetwOork-based DEPIOYMENTeiiiiiiiiie e e e s 8
(Lol 0 oo PP P PRSPPI 8

MOASECUNITY COrE RUIES ...t e e e e e e e s e et e e e e e e e e e e nnrraees 10
OVEIVIBIW ..ttt ettt e et e e e ettt e e e a bt e e e e aae et e e e ans bt e e e e nte e e e e ansseeeeeanneeaaeannteeeenanns 10
COrERUIES SITUCTUIE ...ttt e e e e e e et e e e e e e e s e et te e e e e e e e e e eneneneeas 10
(0o U1 =Y e o1 = 0| RSP 10

1S = = 1 o SRR 11

ConfiguIration DIFECLIVESueiiiiiiieie ettt ettt et e et e e et e e e st e e e e ennbeeeeeane 13
ST o0 Yo o o PR PPPRRTR PPN 13
SECAr QUIMBNT SEPATI AL OF oo e e e e e e e e e eaa e e e e aeeeees 13
SeCAUdi t ENQI N oo 14
SECAUAT T LOG iiiiiiiiiiiii etk e e e e e e e e e e e e e e 14
SECAUAT T LOGZ oottt e e e st e e e e e et e e e e e 15
SECAUAI T LOGPAI 1S .ottt e e aae 15
SecAudi t LOgREl eVaNt St At USuvviiiiieeiiiciiieeee et 16

http://www.breach.com

ModSecurity Reference Manual

SeCAUdi t LOGSE Or AgeDi I' oo 16
TS T o VU Yo [o Yo I IV o 1R 17
T o3 @ o1 e 1o | A 0. RPN 17
S Yol @ o o] I = o] o 2> SRR 17
TS Tod = =T I SRS SSP 18
TS Tod B =Y o LU Lo | o o PR 18
SECDEDUGLOGLEVE] o 18
SECDEf AUl T ACT T ON e e e e e e e e e e 19
SECGUAN i ANLOG 1ot 19
SECREQUEST BOUYACCESS ..iiiiiiiiiiiie ittt ettt e st e e e e e e e e s nbeeeeeane 20
SeCReqUEST BOOYLI M T i 20
SecRequest Bodyl NMEmDr YLI Mt .o 20
SecRespONSEBOAYLI Mt . 21
SeCcResSpPONSEBOAYM IMBTY PO . e e e 21
SecResponseBodyM MEBTYPEST aI ...coocciiiiiiiiiiieeee e 21
SECRESPONSEBOUYACCESS oottt e et eeeanes 22
ST o3 U - SRS 22
SECRUI €1 NNEI T L ANCE oo e e aae 23
SECRUI EENQGI NE oo e e e e s e et e e e e e e e e e e e atrraees 24
SecRUl eReNMDVEBY A oo 25
SECRUI EREMDVEBYIMEQ ..ttt 25
SECSEI VEI Sl QNAL UI © oottt e st e e e s e e e e ntreeeeane 25
ST Toll 1 01 5 I O PP PP PP PPPTRPPPPRPN 25
TS Tod U o] Ho = Lo I 0. PSSR 26
SeCUPl 0AdKEEPFI | S v 26
TS T ol T o1 Y o o o RSP 26
ProCeSSING PRESESoeiiiiiiiiie et 28
Phase REQUESE HEAOEN'Sooiiiiiiie et 29
Phase REQUESE BOOYcoiiiiiiieiiiiie ettt e 29
Phase RESPONSE HEBAENScoooiiiiieece e a e e 29
Phase RESPONSE BOOY ...veeiiiieiiiiiiiiiei et e e e e e e e e e e e e e e s abbrr e e e aaaeeas 29
[=S 0o T 1 o PRt 30
RV = o -SSR 31
ARGS ..o e e e e e e — e e e et —— e e e e e ———t e e e rateeaatareeeannraaaes 31
ARGS_COMBI NED._SI ZEoooueeieeeieeeeeeeeeee e en s en s enasn s 31
ARGS _INAVES ...ttt ettt e et e e e bt e e e e ettt e e e e e nb et e e e enbe e e e s anbbe e e e annaeee s 32
y U I I 4 PRI 32
I ST PRR 32
e T P 32
FI LES_COVBI NED_SI ZE ..ottt 33
FILES_ NANVESooieieeeeee ettt es et n st en st s st eens s s nastnsan s nenentanans 33
FILES _SIZES ...ttt ettt e e e e st e e e st e e e enres 33

ModSecurity Reference Manual

FILES_ TIVPNAVES ..ottt ees et es s ee s sees s e s eses e ss e ees e eseene. 33
HT TP oottt e e e et e et s e e e e et e e ee et e s ees e e s e s s eee et e s ee e eeeere 33
MULTI PART _CRLE_LF_LINES ooveiveeeeeeeeeeeeeeeeeseeeeesesseeseeseeeseesesees e eseeseeseseseeseeses 33
MULTI PART _STRI CT_ERROR .eevetveiveeteeeereeeetesesseeesesseseeseeeseesessessseeseeseesesseseseseasens 34
MULTI PART _UNVATCHED BOUNDARYvoveveeeeseeeeeseeeseeseseeeesesesssesseseeseeseseeseseesens 34
PATH I INFO ..ottt e et e e e e es s ss e eeeere. 35
QUERY_STRI NG ..ottt e e eee et e e ese e e e eeees s see e s s ee e es e sese s eensereeees 35
REMOTE_ADDRvcvoveeveeeeeeeeeeeeeeeseeseeeseeseeseeeeeeeeeseee s s sseesees e seeseesees e eseeseeseeeeeeseese 35
REMOTE_HOST oovoveeeeeeeeeeee e eeeeee e e e st eeesees e teesese e s eseesees e s e seeseee e s eseeseeeeeeseseeres 35
REMOTE PORT ..voevoeveeteeeeeeeeeseesesseeeeeseeseeesseseseesessseeseesseseesseeseseeseeeseeseeseeseeseseseseesens 35
REMOTE_USERvovoveeveeeeeeeeeeeee s eeeseesees e eseeseesess et essesees e sesseseesseesesseseeseseseseeses 36
REQBODY_PROCESSOR ...t eeeeeeteeeeeeeeeeees s e ssees s s eseeses s sse s s e ssesse. 36
REQBODY_PROCESSOR _ERRORcvoveteeeeeeeeseeseseesseeseeseseesssseseseessessessseeesessen. 36
REQBODY_PROCESSOR _ERROR IMBGeoeeeeeeeeeeseeeeeeseeseeseseeeseeses s sssses s eesssse. 36
REQUEST _BASENAE ..ot e seeseeeeeeeeeseesess e sesseeseesseeseesseseesseeseseeseeseeeseeseeses 36
REQUEST _BODY .vooveveeeeteeeeeeeeeseeeeeseeseesseeseeseesese et eseeseesseesesseseesseeseseeseesesesessasens 37
REQUEST _COOKI ES ..ot eeeseeseeeeeeeeeseeseseseesesssesees e esesseseesseesesseseeseseseseeses 37
REQUEST_COOKI ES_NANEScveveeeeeeeeeeeeeeeeeeee e seeeses e eeesees e ss s ene. 37
REQUEST _FI LENANE ..ot eee et s s s es e ee e sse e eseene 37
REQUEST _HEADERSooeeeveeeeeeeesee e eseeseee e eeeesees et ssees s e s s ee e ese s s e eeeseere 37
REQUEST _HEADERS. NANESceveveveeteeeeseeeeeesesseeesesseeseeseeesesseseeseeseseeseeseseseesesens 38
REQUEST LI NE vovoeeeeeeeeeeeeeee s e eseeseeeeeeseeseesese e s essesees s eseseeseeeseesesseseeseseseseasens 38
REQUEST IVETHOD ..ottt eeeseee e eeeeseessee s essesees e s eseeseeeseeseseeseeeeseeeseenes 38
REQUEST _PROTOUOL. ..ottt e e s es s e es s e sse e s ese e 38
REQUEST _URL oottt ettt s et esees s s s ee e es s s eseene 39
REQUEST _URL _RAW. ...ttt s ee s s ees s es s e es s s esesne 39
RESPONSE._ BODYveoteeeeeeoeeeeteeeeeeeeeseeseeeseeseeseesess et esseeseesseesseseeseeeseeseseeseeseeeseeseesens 39
RESPONSE. HEADERSvovoeveeteeeeeeeeseeseeeeseeeeseesessseesesseeseesssesessesessseeseseeseesesesseseasens 39
RESPONSE_ HEADERS. NANESoveveeteeeeeeeeesesseeesesseeseesesessesesessseeseesseseeseseeseseeses 39
RESPONSE_ PROTOUOL. ...ttt s s s es e ss s eee e 40
RESPONSE. STATUS ...ttt ees et es e es s s s s e es s e ss s ees s ere. 40
RULE ..ttt ee et s s e e e s e e ee e s eesees e e s e eee e e s es e eeeere 40
SCRI PT_BASENANEcoveveeveeeeeeeeeeeeeeeseseeeeeeeeeseesseeseesssessessessesesseseseesesesssesseeseseeees 40
SCRI PT_FI LENANE ..ottt eeeeseeeeeseee s esees e et aseeseessesseeseesesseeseeseessessenseeseeees 40
e x4 1 1 o OO 41
SCRI PT_GROUPNANE ...ttt eeeeeeeeeeseee e eeeeeeeeeeeeseeeses e se s e eee et sse e s eensesenees 41
SCRI PT_IMODE ..ottt e e e e ees s s e e s es e e s esese s eensereeees 41
SCRI PT UL D oottt e e e es e e s et es e e s s eee s eensereeees 41
SCRI PT_USERNANEcvvevetveeteeeeeeeeeeeseeseeseeeseeseessesseeseasessessesseesessessseesesesssessesseseeees 41
SERVER ADDRvovoteeeeeeeeeeeeeseeseeeeeeseesesseesseeseeseesesese et aseeseessessseseesesessessaseessesseeseeseeees 42
SERVER NAVE ... oottt eeee e e eeseeseee s e e eseessee s eseasees e seesseseeseseeeseeseesseeeesseeseeees 42
SERVER _PORT .ottt e et e e eee st eee e e se s es e se et ee e et re e s s sesenees 42

ModSecurity Reference Manual

] 1 USSP 42
SESSI ONI D .ottt e e e e e e e e e e e e et a e e e e e e e e s e et b re e e e e e e e e e e nraraaes 42
T NV e e ettt e e e e et e e et e e et a e et araaan 43
LY A PSP 43
LY = = 20 @ = IR 43
TEME _HOUR L.ttt e e e et e e e e e s e et a e e e e e e e e e s s entbbraeeeeaeesaannnes 43
TEIME M N et e e e e e et e e e e e s e s atbre e e e e aeeessantabraeeeeaeeseannnes 43
TEHIVE IMON et e e e e e et b e e et e e e e e s e s aatbreeeeeaeeesaentatraeeeeaeesaaaanes 43
TEIME _SEC ... ittt e e e e ettt e e e e e s e et b e e e e e e e e e e e ettt raeeeaaeeeeaannes 43
LY L 2\ PSP 44
TT ME Y EAR et e ettt e et e et e e e e et tr b aaaaane 44
10 U PRRRR 44
USERI D .ottt e e e e s e e b e e e e e e e e e — b ——a e e e e e e e e aarrreraaaaaas 44
VAEBAPPI D ...ttt ettt e e e e e e et e e e e e e e e et —ra e e e e e e e s e et b reaeeaaeaaaaant 44
VEBSERVER ERROR LOGouuiuitieieiecececeeeeee ettt ettt ettt sesenns 45
Y S 45
TransformMation FUNCLIONSueuiiiieieiiieiiieiereeeterereserereressrereserersssreseresesessrssssarrrrrrrssrrrrrrrrrrnes 47
DASEBADECOUE ... e aa s 47
DASEBAENCOAE ... 47
COMPI €SSWAI T @SPACE .eeeiiiiiiiei et e e e e st e e e e e e e e neeeeeeas 47
ESCAPESEUDECOUE ...ttt aae 47
NEXDECOUE . 48
NEXENCOUE . 48
N g I I A YA =T o o 1o [TR 48
01T T ox- Fo = TSRO 48
100 1T PPPPP 48
0] PPN 48
NOIr MBI T SEPAL N oo 48
NOr MBI T SEPAt DWW N oo 48
FEMDVENUL | S oo e e e e e e e e e e e e s e st r e e e aaee s 48
FENMDVEWAI T ESPACE i e e e s e et e e e e e e s s anrrreeeaaeeas 49
(=T I ol =T @ 0] 117 = | SRR 49
FEPIACENUI T S e 49
UL L DECOTE e 49
UP L DECOAEBUNI e 49
U I o oo Yo [P 49
L= = TS OPPPRRRRRN 49
o () PPNt 50
Al L OW 50
=0 [[o 0 o IR PSSP PP PPPPPTRPPPPRPN 50
AP U B e 50
(o o= VI o PR 51

ModSecurity Reference Manual

o3 O PP PRRTROPPRRRN 51
ENY 52
JEPI ECAL BV AT .ottt e ek e e e et e e e e s b e e e e e st e e e e aan 52
(0 g0} o T PSPPSR PPPPPTRPPPPRPN 52
L =] o PO PPTR R PPPPPPPPIN 53
L T =1V L PR 53
o SRR 54
0 oo | SRR 54
o T o IR PP PPPPON 55
153 o TP 55
U T 1 X o o PR 56
(Yo T 10 [T A I Yo TR 56
(To] 1o T TSP 56
P S S et 57
= LU 1 = SRR 57
11 F= Y = TSP PP PPPPPPON 57
1 D Y/ PP 57
(=70 [=T o3 PRSPPI 58
L BV e 58
EST= T I A TS = A o PP 58
SANi ti SEMAL ChEd . 59
Sani ti SEREQUEST HEAUET ..o e 59
SaNi ti SERESPONSEHEAUEGT ..ooiiiiiiii e 59
LY=LV A= S A0 U PRRRR 59
LY = ST o PP 60
LS = = I o PSSP UERR 60
ST <1 =Y 0 1P PTR R TPPRRPPPRIN 60
Y <] Y- | PP P PR PPTR R PPRPPPPPIN 61
L] S < TP P PUPRP PP 61
LS - L U TP PP P PP PPPPPPPPPPPPPPPPPPPIR 62
PP 62
D4 1 T BTSSP PUERR 62
L0 0= - (o= PO PRSPPI 63
T o PP PPPPPPPPPP 63
D i 63
PSPPSR 63
I NSPECT i | @ oo e e e e e e e e e e s e r e e e e s 63
= SRR 63
SRR 64
0 | SRR 64
D PO PP PP 64
val i dat @Byt ERANGE ..o a e 64

ModSecurity Reference Manual

(2= Lo F= U =T I RO SO U PR PPPTPPOPPPOTRI 65
Val 1 dat @SCREIMA ..o 65
val i dat @Ur I ENCOAI NQ .oooiiiiiiieieiee et 65
val i dat @Ut f BENCOAI N ..oueeiiiiiiiieie e 66
MISCEIANEOUS TOPICS ...ttt ettt ettt e ettt ettt e e e e e s et e e e enbbe e e e e nnnn e e e e ennrees 67
IMPEAANCE MISMAECH ...uviiiiiie e e e e e e e e e e e e s st reeeaaeeas 67

ModSecurity Reference Manual

Introduction

ModSecurity™ is a web application firewall (WAF). With over 70% of al attacks now carried out over
the web application level, organisations need every help they can get in making their systems secure.
WAFs are deployed to establish an external security layer that increases security, detects, and prevents at-
tacks before they reach web applications. It provides protection from a range of attacks against web ap-
plications and allows for HTTP traffic monitoring and real-time analysis with little or no changes to exist-
ing infrastructure.

HTTP Traffic Logging

Web servers are typically well-equipped to log traffic in a form useful for marketing analyses, but fall
short when it comes to logging of traffic to web applications. In particular, most are not capable of log-
ging the request bodies. Y our adversaries know this, and that is why most attacks are now carried out via
POST requests, rendering your systems blind. ModSecurity makes full HTTP transaction logging pos-
sible, allowing complete requests and responses to be logged. Its logging facilities aso allow fine-grained
decisions to be made about exactly what islogged and when, ensure only the relevant data is recorded.

Real-Time Monitoring and Attack Detection

In addition to providing logging facilities, ModSecurity can monitor the HTTP traffic in real time in order
to detect attacks. In this case ModSecurity operates as a web intrusion detection tool, allowing you to re-
act to suspicious events that take place at your web systems.

Attack Prevention and Just-in-time Patching

ModSecurity can also act immediately to prevent attacks from reaching your web applications. There are
three commonly used approaches:

1. Negative security model. Negative security model monitors requests for anomalies, unusual be-
haviour, and common web application attacks. It keeps anomaly scores for each request, IP ad-
dresses, application sessions, and user accounts. Requests with high anomaly scores are either
logged or rejected altogether.

2. Positive security model. When positive security model is deployed, only requests that are
known to be valid are accepted, with everything else rejected. This approach works best with
applications that are heavily used but rarely updated.

3. Known weaknesses and vulnerabilities. Its rule language makes ModSecurity an ideal external
patching tool. External patching is all about reducing the window of opportunity. Time needed
to patch application vulnerabilities often runs to weeks in many organisations. With ModSecur-
ity, applications can be patched from the outside, without touching the application source code
(and even without any access to it), making your systems secure until a proper patch is pro-
duced.

ModSecurity Reference Manual

Flexible Rule Engine

A flexible rule engine sits in the heart of ModSecurity. It implements the ModSecurity Rule Language,
which is a specialised programming language designed to work with HTTP transaction data. The ModSe-
curity Rule Language was designed to be easy to use, yet flexible: common operations are smple while
complex operations are possible. Certified ModSecurity Rules, included with subscription to ModSecur-
ity, contain a comprehensive set of rules that implement general -purpose hardening, common web applic-
ation security issues. Heavily commented, these rules can be used as alearning tool.

Embedded-mode Deployment

ModSecurity is an embeddable web application firewall, which means it can be deployed as part of your
existing web server infrastructure provided your web servers are Apache-based. This deployment method
has certain advantages.

1. No changes to existing network. It only takes a few minutes to add ModSecurity to your exist-
ing web servers. And because it was designed to be completely passive by default, you are free
to deploy it incrementally and only use the features you need. It is equally easy to remove or
deactivate it should decide you don't want it any more.

2. Nosingle point of failure. Unlike with network-based deployments, you will not be introducing
anew point of failureto your system.

3. Implicit load balancing and scaling. Because it works embedded in web servers, ModSecurity
will automatically take advantage of the additional load balancing and scalability features. Y ou
will not need to think of load balancing and scaling unless your existing system needs them.

4. Minima overhead. Because it works from inside the web server process there is no overhead
for network communication and minimal overhead in parsing and data exchange.

5. No problem with encrypted or compressed content. Many 1DS systems have difficulties analys-
ing SSL traffic. Thisis not a problem for ModSecurity because it is positioned to work when
the traffic is decrypted and decompressed.

ModSecurity is known to work well on awide range of operating systems. Our customers are successfully
running it on Linux, Windows, Solaris, FreeBSD, OpenBSD, NetBSD, AlX, Mac OS X, and HP-UX.

Network-based Deployment

ModSecurity works equally well when deployed as part of an Apache-based reverse proxy server, and
many of our customers choose to do so. In this scenario, one installation of ModSecurity can protect any
number of web servers (even the non-Apache ones).

Licensing
ModSecurity is available under two licenses. Users can choose to use the software under the terms of the

GNU General Public License version 2 (licence text is included with the distribution), as an Open Source
| Free Software product. A range of commercial licenses is also available, together with a range of com-

ModSecurity Reference Manual

mercial support contracts. For more information on commercial licensing please contact Breach Security.

Note

ModSecurity, mod_security, and ModSecurity Pro are trademarks or registered trademarks of
Breach Security, Inc.

ModSecurity Reference Manual

ModSecurity Core Rules

Overview

ModSecurity is a web application firewall engine that provides very little protection on its own. In order
to become useful, ModSecurity must be configured with rules. In order to enable users to take full advant-
age of ModSecurity out of the box, Breach Security Inc. is providing a free certified rule set for ModSe-
curity 2.0. Unlike intrusion detection and prevention systems, which rely on signature specific to known
vulnerabilities, the Core Rules provide generic protection from unknown vulnerabilities often found in
web applications, which are in most cases custom coded. The Core Rules are heavily commented to allow
it to be used as a step-by-step deployment guide for ModSecurity. The latest Core Rules can be found at
the ModSecurity website - http://www.modsecurity.org/projects/rules/.

Core Rules Structure

If you expect a single pack of Apache configuration files, you are right, and wrong. A ModSecurity rule
set includes information about different areas:

» Thelogic required to detect attacks.

» A policy setting the actions to perform if an attack is detected.

» Information regarding attacks.
In order to alow separate management of the different parts, the Core Rules are based on templates that
are generated into a run-time rule set by inserting policy, patterns and event information. The Core Rules
package includes these templates, the generation script (written in Perl) and data files required to generate

a useful rule set. It aso includes a bunch of pre-generated rule sets for different policies. The generation
script also allows two optimizations:

» Optima use of regular expressions. Since regular expressions are much more efficient if as-
sembled into a single expression and optimized, the generation script takes the list of patterns
that are required for arule and optimize them into amost efficient regular expression.

* Removal of rulesthat are not utilized by a specific policy.

Core Rules Content

In order to provide generic web applications protection, the Core Rules use the following techniques:
e HTTP protection - detecting violations of the HTTP protocol and alocally defined usage policy.
« Common Web Attacks Protection - detecting common web application security attack.
» Automation detection - Detecting bots, crawlers, scanners and other surface malicious activity.
» Trojan Protection - Detecting access to Trojans horses.
» Error Hiding - Disguising error messages sent by the server.

10

http://www.modsecurity.org/projects/rules/

ModSecurity Reference Manual

Installation

ModSecurity installation consists of the following steps:

ModSecurity 2.x works with Apache 2.0.x or better.

Make sure you have nod_uni que_i d installed.

Install the latest version of libxml2, if it isn't already installed on the server.
Unpack the ModSecurity archive

g A~ w D P

Edit Makefile to configure the path to the Apache ServerRoot directory. Y ou can check this by
identifying the ServerRoot directive setting in your httpd.conf file. This is the path that was
specified with the "--install-path=" configuration flag during compilation (for example, in Fe-
doraCored:top_dir = /etc/httpd).

6. Edit Makefile to configure the correct include path for libxml (for example: | N-
CLUDES=-1/usr/include/libxm 2)

7. Compilewith make
Stop Apache

9. Install with make install

10. Add onelineto your configuration to load libxml2:
LoadFile /usr/lib/libxm2.so

11. Add onelineto your configuration to load ModSecurity:
LoadModul e security2_nodul e nodul es/ nod_security2. so
12. Configure ModSecurity
13. Start Apache
14. You now have ModSecurity 2.x up and running.

Note

If you have compiled Apache yourself or are compiling for a distribution, please read the follow-
ing notes.

The ModSecurity Core rules may assume XML support is available (compiled with -
DWITH_LIBXML?2). You may have to manualy remove any XML references in the Core rules
if you choose not to include XML support. In future versions of ModSecurity XML support will
be required. For these reasons, please consider XML support required.

Y ou might experience problems compiling ModSecurity against PCRE. This is because Apache
bundles PCRE but this library is also typically provided by the operating system. | would expect
most (all) vendor-packaged Apache distributions to be configured to use an external PCRE lib-
rary (so this should not be a problem).

Y ou want to avoid Apache using the bundled PCRE library and ModSecurity linking against the
one provided by the operating system. The easiest way to do thisisto compile Apache against the
PCRE library provided by the operating system (or you can compile it against the latest PCRE

11

ModSecurity Reference Manual

version you downloaded from the main PCRE distribution site). Y ou can do this at configure time
using the - -wi t h- pcr e switch. If you are not in a position to recompile Apache then, to com-
pile ModSecurity successfully, you'd still need to have access to the bundled PCRE headers (they
are available only in the Apache source code) and change the include path for ModSecurity (as
you did in step 7 above) to point to them.

If your Apache is using an external PCRE library you can compile ModSecurity with

W TH_PCRE_STUDY defined,which would possibly give you a dlight performance edge in regu-
lar expression processing.

12

ModSecurity Reference Manual

Configuration Directives

The following section outlines al of the ModSecurity directives. Most of the ModSecurity directives can
be used inside the various Apache Scope Directives such as Vi r t ual Host , Locat i on, Locat i on-

Mat ch, Di r ect ory, etc... There are others, however, that can only be used once in the main configura-
tion file. Thisinformation is specified in the Scope sections below.

These rules, along with the Core rules files, should be contained is files outside of the httpd.conf file and
called up with Apache "Include’ directives. This alows for easier updating/migration of the rules. If you
create your own custom rules that you would like to use with the Core rules, you should create a file
called - modsecurity _crs_15 custonrul es. conf and placeit in the same directory as the Core
rules files. By using this file name, your custom rules will be called up after the standard ModSecurity
Core rules configuration file but before the other Core rules. This alows your rules to be evaluate first
which can be useful if you need to implement specific "allow" rules or to correct any false positivesin the
Corerules asthey are applied to your site.

Note

It is highly encouraged that you do not edit the Core rules files themselves but rather place all changes
(such as SecRul eRenmoveByl D, etc...) in your custom rules file. Thiswill allow for easier upgrading as
newer Corerules are released by Breach Security on the ModSecurity website.

SecActi on

Description: Unconditionally processes the action list it receives as the first and only parameter. It ac-
cepts one parameter, the syntax of which isidentical to the third parameter of SecRul e.

Syntax: SecActi on actionl, acti on2, acti on2

Example Usage: SecActi on nol og, redirect: http://ww. host nane. com
ProcessingPhase: Any

Scope: Any

Dependencies/Notes: None

SecAction is best used when you uncondiationally execute an action. This is explicit triggering whereas
the normal Actions are conditional based on data inspection of the request/response. Thisis a useful dir-
ective when you want to run certian actions such as initcol to initialize collections.

SecAr gunent Separ at or

Description: Specifies which character to use as separator for application/
X-ww\- f or m ur | encoded content. Defaults to & Applications are sometimes (very rarely) written
to use asemicolon (;).

Syntax: SecAr gunent Separ at or char act er
Example Usage: SecAr gunent Separ at or ;
Processing Phase: Any

13

ModSecurity Reference Manual

Scope: Main
Dependencies/Notes: None

This directive is needed if a backend web appliaction is using a non-standard argument separator. If this
directive is not set properly for each web app, then ModSecurity will not be able to parse the arguements
appropriately and the effectiveness of the rule matching will be significantly decreased.

SecAudi t Engi ne

Description: Configures the audit logging engine.

Syntax: SecAudi t Engi ne On| O f | Rel evant Onl y

Example Usage: SecAudi t Engi ne On

Processing Phase: N/A

Scope: Any

Dependencies/Notes: Can be set/changed with the "ctl" action for the current transaction.
Example: The following example shows the various audit directives used together.

SecAudi t Engi ne Rel evant Only
SecAudi t Log | ogs/audit/audit.!| og
SecAudi t LogParts ABCFHZ

SecAudi t LogType concurrent
SecAudi t LogSt orageDir | ogs/ audit
SecAudi t LogRel evant St at us [45]

Possible values are;

* On -logall transactions by default.
e« O f -donotlog transactions by default.

* Rel evant Onl y - by default only log transactions that have triggered a warning or an error, or
have a status code that is considered to be relevant (see SecAudi t LogRel evant St at us).

SecAudi t Log

Description: Defines the path to the main audit log file.

Syntax: SecAudi t Log / pat h/to/auditl og

Example Usage: SecAudi t Log /usr/ | ocal / apache/ | ogs/audit. | og

Processing Phase: N/A

Scope: Any

Dependencies/Notes: Thisfile is open on startup when the server typically still runs as root. Y ou should
not allow non-root usersto have write privileges for thisfile or for the directory it is stored in..

Thisfile will be used to store the audit log entriesif serial audit logging format is used. If concurrent audit
logging format is used this file will be used as an index, and contain arecord of al audit log files created.
If you are planning to use Concurrent audit logging and sending your audit log data off to a remote Con-

14

ModSecurity Reference Manual

sole host, then you will need to use the modsec-auditlog-collector.pl script and use the following format:

SecAudi t Log \
"| / pat h/ nodsec-audi t| og-col | ector. pl /path/ SecAuditLogbDataDir /path/SecAuditLog"

SecAudi t Log?2

Description: Defines the path to the secondary audit log index file when concurrent logging is enabled.
See SecAudi t Log2 for more details.

Syntax: SecAudi t Log2 / pat h/to/auditl og2

Example Usage: SecAudi t Log2 /usr/ | ocal / apache/ | ogs/audit 2.1 og

Processing Phase: N/A

Scope: Any

Dependencies/Notes: A main audit log must be defined via Sec Audi t Log before this directive may be

used. Additionally, this log is only used for replicating the main audit log index file when concurrent
audit logging is used. It will not be used for non-concurrent audit logging.

SecAudi t LogPart s

Description: Defines the path to the main audit log file.

Syntax: SecAudi t LogParts PARTS

Example Usage: SecAudi t LogParts ABCFHZ

Processing Phase: N/A

Scope: Any

Dependencies/Notes: At this time ModSecurity does not log response bodies of stock Apache responses
(e.g. 404), or the Ser ver and Dat e response headers.

Default: ABCFHZ.

Available audit log parts:

* A- audit log header (mandatory)

* B -request headers

* C-request body (present only if the request body exists and ModSecurity is configured to inter-
cept it)

* D- RESERVED for intermediary response headers, not implemented yet.

* E - intermediary response body (present only if ModSecurity is configured to intercept response
bodies, and if the audit log engine is configured to record it). Intermediary response body is the
same as the actual response body unless ModSecurity intercepts the intermediary response body,
in which case the actual response body will contain the error message (either the Apache default
error message, or the ErrorDocument page).

* F - final response headers (excluding the Date and Server headers, which are aways added by

15

ModSecurity Reference Manual

Apache in the late stage of content delivery).

* G- RESERVED for the actual response body, not implemented yet.

e H- auditlog trailer

e | - Thispart isareplacement for part C. It will log the same data as C in all cases except when
mul ti part/form dat a encoding in used. In this case it will log a fake appl i cati on/
X-www f or m ur | encoded body that contains the information about parameters but not
about the files. This is handy if you don't want to have (often large) files stored in your audit
logs.

e J - RESERVED. This part, when implemented, will contain information about the files up-
loaded using mul t i part/f or m dat a encoding.

e Z-fina boundary, signifiesthe end of the entry (mandatory)

SecAudi t LogRel evant St at us

Description: Configures which response status code is to be considered relevant for the purpose of audit
logging.

Syntax: SecAudi t LogRel evant St at us RECGEX

Example Usage: SecAudi t LogRel evant St at us [45]

Processing Phase: N/A

Scope: Any

Dependencies/Notes: Must have the SecAuditEngine set to RelevantOnly. The parameter is a regular ex-
pression.

The main purpose of this directive is to allow you to configure audit logging for only transactions that
generate the specified HTTP Response Status Code. This directive is often used to the decrease the total
size of the audit log file. Kegp in mind that if this parameter is used, then successful attacks that result in a
200 OK status code will not be logged.

SecAudi t LogSt orageDir

Description: Configures the storage directory where concurrent audit log entries are to be stored.

Syntax: SecAudi t LogSt orageDir /path/to/storage/dir

Example Usage: SecAudi t LogSt orageDi r /usr/ | ocal / apache/| ogs/ audi t

Processing Phase: N/A

Scope: Any

Dependencies/Notes: SecAuditLogType must be set to Concurrent. The directory must already be cre-

ated before starting Apache and it must be writable by the web server user as new files are generated at
runtime.

As with all logging mechanisms, ensure that you specify a file system location that has adequate disk
space and is not on the root partition.

16

ModSecurity Reference Manual

SecAudi t LogType

Description: Configuresthe type of audit logging mechanism to be used.

Syntax: SecAudi t LogType Seri al | Concurrent

Example Usage: SecAudi t LogType Seri al

Processing Phase: N/A

Scope: Any

Dependencies/Notes: Must specify SecAuditLogStorageDir if you use concurrent ogging.

Possible values are:

1. Serial -al auditlog entries will be stored in the main audit logging file. This is more con-

venient for casual use but it is slower as only one audit log entry can be written to the file at
any onefile.

2. Concurrent - audit log entrieswill be stored in separate files, one for each transaction. Con-
current logging is the mode to use if you are going to send the audit log data off to a remote
ModSecurity Console host.

SecChrootDir

Description: Configures the directory path that will be used to jail the web server process.

Syntax: SecChrootDir /path/to/chroot/dir

Example Usage: SecChr oot Di r / chr oot

Processing Phase: N/A

Scope: Main

Dependencies/Notes: The internal chroot functionality provided by ModSecurity works great for simple
setups. One example of a simple setup is Apache serving static files only, or running scripts using mod-
ules. For more complex setups you should consider building ajail the old-fashioned way. The internal ch-
root feature should be treated as somewhat experimental. Due to the large number of default and third-
party modules available for the Apache web server, it is not possible to verify the internal chroot works
reliably with all of them. Y ou are advised to think about your option and make your own decision. In par-
ticular, if you are using any of the modules that fork in the module initialisation phase (e.g. mod_fastcgi,
mod_fcgid, mod_cgid), you are advised to examine each Apache process and observe its current working
directory, processroot, and the list of open files.

SecCooki eFor mat

Description: Selects the cookie format that will be used in the current configuration context.
Syntax: SecCooki eFornat 0] 1

Example Usage: SecCooki eFormat 0

Processing Phase: N/A

Scope: Any

17

ModSecurity Reference Manual

Dependencies/Notes: None
Possible values are:

e 0 - useversion 0 (Netscape) cookies. Thisiswhat most applications use. It isthe default value.
e 1 -useversion 1 cookies.

SecDat aDi r

Description: Path where persistent data (e.g. | P address data, session data, etc) is to be stored.

Syntax: SecDataDir /path/to/dir

ExampleUsage: SecDat aDir /usr/1 ocal / apache/ | ogs/ dat a

Processing Phase: N/A

Scope: Main

Dependencies/Notes: Thisdirective is needed when initcol, setsid an setuid are used. Must be writable by
the web server user.

SecDebuglLog

Description: Path to the ModSecurity debug log file.

Syntax: SecDebuglLog / pat h/ t o/ nodsec- debug. | og

Example Usage: SecDebuglLog /usr/ | ocal / apache/ | ogs/ nodsec- debug. | og
Processing Phase: N/A

Scope: Any

Dependencies/Notes: None

SecDebuglLogLevel

Description: Configures the verboseness of the debug log data.

Syntax: SecDebugLogLevel 0| 1] 2| 3|4|5|6]7|8]|9

Example Usage: SecDebugLoglLevel 4

Processing Phase: N/A

Scope: Any

Dependencies/Notes: Levels1 - 3 are always sent to the Apache error log. Therefore you can always

use level 0 as the default logging level in production. Level 5 is useful when debugging. It is not advis-
able to use higher logging levelsin production as excessive logging can slow down server significantly.

Possible values are:
* 0-nologging.
» 1 - errors(intercepted requests) only.
e 2 -warnings.
* 3 -notices.

18

ModSecurity Reference Manual

* 4 - details of how transactions are handled.
» 5 -asabove, but including information about each piece of information handled.
* 9 -log everything, including very detailed debugging information.

SecDef aul t Acti on

Description: Defines the default action to take on arule match.
Syntax: SecDef aul t Acti on actionl, action2, acti on3

Example Usage: SecDef aul t Acti on
| og, audi t1 og, deny, st at us: 403, phase: 2,t: 1 ower case

Processing Phase: Any

Scope: Any

Dependencies/Notes: Rules following a SecDefaultAction directive will inherit this setting unless a spe-
cific action is specified for an indivdual rule or until another SecDefaultAction is specified.

The default valueis:

SecDef aul t Acti on | og, audi tl og, deny, st at us: 403, phase: 2,t: | owercase, t:replaceNul |l s, t: conpress

Note
SecDefaultAction must specify a disruptive action and a processing phase.

SecCuar di anLog

Description: Configuration directive to use the httpd-guardian script to monitor for Denial of Service
(DoS) attacks.

Syntax: SecGuar di anLog |/ path/to/ htt pd-guardi an

Example Usage: SecCGuar di anLog |/ usr/ | ocal / apache/ bi n/ ht't pd- guar di an
Processing Phase: N/A

Scope: Main

Dependencies/Notes: By default httpd-guardian will defend against clients that send more 120 requests
in aminute, or more than 360 requests in five minutes.

Since 1.9, ModSecurity supports a new directive, SecGuardianL og, that is designed to send all access data
to another program using the piped logging feature. Since Apache istypically deployed in a multi-process
fashion, making information sharing difficult, the ideais to deploy a single external process to observe all
requests in a stateful manner, providing additional protection.

Development of a state of the art external protection tool will be a focus of subsequent ModSecurity re-
leases. However, a fully functiona tool is aready available as part of the Apache httpd tools project
[http://www.apachesecurity.net/tools/]. The tool is caled httpd-guardian and can be used to defend
against Denia of Service attacks. It uses the blacklist tool (from the same project) to interact with an ipt-
ables-based (Linux) or pf-based (*BSD) firewall, dynamically blacklisting the offending IP addresses. It
can aso interact with SnortSam (http://www.snortsam.net). Assuming httpd-guardian is already con-

19

http://www.apachesecurity.net/tools/

ModSecurity Reference Manual

figured (look into the source code for the detailed instructions) you only need to add one line to your
Apache configuration to deploy it:

SecGuar di anLog |/ path/to/ httpd-guardi an

SecRequest BodyAccess

Description: Configures whether request bodies will be buffered and processed by ModSecurity by de-
fault.

Syntax: SecRequest BodyAccess On| O f

Example Usage: SecRequest BodyAccess On

Processing Phase: N/A

Scope: Any

Dependencies/Notes: This directive is required if you plan to inspect POST_PAYLOADS of requests.
This directive must be used along with the "phase:2" processing phase action and REQUEST_BODY

variable/location. If any of these 3 parts are not configured, you will not be able to inspect the request
bodies.

Possible values are;

* On - accessrequest bodies.
e« O f -donot attempt to access request bodies.

SecRequest BodyLi m t

Description: Configures the maximum request body size ModSecurity will accept for buffering.

Syntax: SecRequest BodyLi mit NUVBER | N BYTES

Example Usage: SecRequest BodyLi mit 134217728

Processing Phase: N/A

Scope: Any

Dependencies/Notes: 131072 KB (134217728 bytes) is the default setting. Anything over this limit will
be rejected with status code 413 Request Entity Too Large. Thereisahard limit of 1 GB.

SecRequest Bodyl nMenor yLi m t

Description: Configures the maximum request body size ModSecurity will store in memory.
Syntax: SecRequest Bodyl nMenoryLi mt NUVBER_| N_BYTES

Example Usage: SecRequest Bodyl nMenoryLi mt 131072

Processing Phase: N/A

Scope: Any

Dependencies/Notes: None

By default the limit is 128 KB:

20

ModSecurity Reference Manual

Store up to 128 KB in nenory
SecRequest Bodyl nMenoryLimt 131072

SecResponseBodyLi m t

Description: Configures the maximum response body size that will be accepted for buffering.

Syntax: SecResponseBodyLi mit NUMBER_|I N_BYTES

Example Usage: SecResponseBodyLi mt 524228

Processing Phase: N/A

Scope: Any

Dependencies/Notes: Anything over thislimit will be rejected with status code 500 Internal Server Error.

This setting will not affect the responses with MIME types that are not marked for buffering. There is a
hard limit of 1 GB.

By default thislimit is configured to 512 KB:

Buffer response bodies of up to 512 KB in |ength
SecResponseBodyLimt 524288

SecResponseBodyM neType

Description: Configureswhich M ME types are to be considered for response body buffering.

Syntax: SecResponseBodyM neType m ne/type

Example Usage: SecResponseBodyM nmeType text/plain text/htnl

Processing Phase: N/A

Scope: Any

Dependencies/Notes: Multiple SecResponseBodyM nmeType directives can be used to add M ME
types.

Thedefault valueist ext / pl ai ntext/ htm :

SecResponseBodyM neType text/plain text/htm

SecResponseBodyM neTypesd ear

Description: Clears the list of M IVE types considered for response body buffering, allowing you to start
populating the list from scratch.

Syntax: SecResponseBodyM neTypesd ear
Example Usage: SecResponseBodyM neTypesd ear
Processing Phase: N/A

Scope: Any

21

ModSecurity Reference Manual

Dependencies/Notes: None

SecResponseBodyAccess

Description: Configures whether response bodies are to be buffer and analysed or not.

Syntax: SecResponseBodyAccess On| O f

Example Usage: SecResponseBodyAccess On

Processing Phase: N/A

Scope: Any

Dependencies/Notes: This directive isrequired if you plan to inspect html responses. This directive must

be used along with the "phase:4" processing phase action and RESPONSE BODY variable/location. If
any of these 3 parts are not configured, you will not be able to inspect the response bodies.

Possible values are:
* On - access response bodies (but only if the MIME type matches, see above).
e O f -donot attempt to access response bodies.

SecRul e

Description: SecRul e isthe main ModSecurity directive. It is used to analyse data and perform actions
based on the results.

Syntax: SecRul e VARI ABLES OPERATOR [ACTI ONS]
Example Usage: SecRul e REQUEST_URI "at t ack"
Processing Phase: Any

Scope: Any

Dependencies/Notes: None

In general, the format of thisruleis asfollows:

SecRul e VARI ABLES OPERATCR [ACTI ONS]

The second part, OPERATOR, specifies how they are going to be checked. The third (optional) part, AC-
TI ONS, specifies what to do whenever the operator used performs a successful match against avariable.

Variables in rules
Thefirst part, VARI ABLES, specifies which variables are to be checked. For example, the following rule
will rgject atransaction that has the word dirty in the URI:

SecRul e REQUEST URI dirty
Each rule can specify one or more variables:

SecRul e REQUEST_URI | QUERY_STRING dirty

22

ModSecurity Reference Manual

There is a third format supported by the selection operator - XPath expression. XPath expressions can
only used against the specia variable XML, which is available only of the request body was processed as
XML.

SecRul e XM.: / xPat h/ Expression dirty

Note

As you have just seen, not al collections support all selection operator format types. Y ou should
refer to the documentation of each collection to determine what is and isn't supported.

Operators in rules

In the simplest possible case you will use aregular expression pattern as the second rule parameter. This
is what we've done in the examples above. If you do this ModSecurity assumes you want to use the r x
operator. You can explicitly specify the operator you want to use by using @as the first character in the
second rule parameter:

SecRul e REQUEST URI "@x dirty"

Note how we had to use double quotes to delimit the second rule parameter. This is because the second
parameter now has a whitespace in it. Any number of whitespace characters can follow the name of the
operator. If there are any non-whitespace characters there, they will al be treated as a special parameter to
the operator. In the case of the regular expression operator the special parameter is the pattern that will be
used for comparison.

The @ can be the second character if you are using negation to negate the result returned by the operator:

SecRul e &ARGS "! @x "0$"

Actions in rules

The third parameter, ACTI ONS, can be omitted only because there is a helper feature that specifies the
default action list. If the parameter isn't omitted the actions specified in the parameter will be merged with
the default action list to create the actual list of actions that will be processed on arule match.

SecRul el nheri tance

Description: Configures whether the current context will inherit rules from the parent context
(configuration options are inherited in most cases - you should look up the documentation for every dir-
ective to determineiif it isinherited or not).

Syntax: SecRul el nheritance On| O f
Example Usage: SecRul el nheritance O f
Processing Phase: Any

23

ModSecurity Reference Manual

Scope: Any

Dependencies/Notes: Resource-specific contexts (e.g. Locati on, Di r ect ory, etc) cannot override
phasel rules configured in the main server or in the virtual server. Thisis because phase 1 isrun early in
the request processing process, before Apache maps request to resource. Virtual host context can override
phase 1 rules configured in the main server.

Example: The following example shows where ModSecurity may be enabled in the main Apache config-
uration scope, however you might want to configure your VirtualHosts differently. In the first example,
the first virtualhost is not inheriting the ModSecurity main config directives and in the second oneiit is.

SecRul eEni ne On
SecDef aul t Acti on | og, pass, phase: 2

<Vi rtual Host *:80>

Server Nane appl.com

Server Ali as www. appl. com

SecRul el nheritance O f

SecDef aul t Acti on | og, deny, phase: 1, redirect: http://ww.site2. com

</ Vi r t ual Host >

<Vi rt ual Host *: 80>

Server Nane app2.com

Server Al i as www. app2. com

SecRul el nheritance On SecRul e ARGS "att ack"

</ Vi r t ual Host >

Possible values are;

* On - inherit rules from the parent context.
e O f -donotinherit rules from the parent context.

SecRul eEngi ne

Description: Configuresthe rules engine.

Syntax: SecRul eEngi ne On| O f | Det ecti onOnly

Example Usage: SecRul eEngi ne On

Processing Phase: Any

Scope: Any

Dependencies/Notes: Thisdirective can also be controled by the ctl action (ctl:ruleEngine=off) for per
rule processing.

Possible values are:

* On - processrules.

24

ModSecurity Reference Manual

e O f -donot processrules.

* DetectionOnly - process rules but never intercept transactions, even when rules are con-
figured to do so.

SecRul eRenoveByl d

Description: Removes matching rules from the parent contexts.

Syntax: SecRul eRenmoveByl d RULEI D

Example Usage: SecRul eRenoveByl D 1 2 "9000-9010"

Processing Phase: Any

Scope: Any

Dependencies/Notes: This directive supports multiple parameters, where each parameter can either be a
rule ID, or arange. Parameters that contain spaces must be delimited using double quotes.

SecRul eRenpveByld 1 2 5 10-20 "400-556" 673

SecRul eRenoveByMsg

Description: Removes matching rules from the parent contexts.

Syntax: SecRul eRenoveByMsg REGEX

Example Usage: SecRul eRenoveByMsg " FAI L"

Processing Phase: Any

Scope: Any

Dependencies/Notes: This directive supports multiple parameters. Each parameter is aregular expression
that will be applied to the message (specified using the ms g action).

SecServer Si gnat ure

Description: Instructs ModSecurity to change the data presented in the " Server:" response header token.
Syntax: SecSer ver Si gnat ure "WEB SERVER SOFTWARE"

Example Usage: SecSer ver Si gnature "Net scape-Enterprise/6.0"

Processing Phase: N/A

Scope: Main

Dependencies/Notes: In order for this directive to work, you must set the Apache ServerTokens directive
to Full. ModSecurity will overwrite the server signature data held in this memory space with the data set

in this directive. If ServerTokensis not set to Full, then the memory space is most likely not large enough
to hold the new data we are |ooking to insert.

SecTnpDir

Description: Configuresthe directory where temporary fileswill be created.

25

ModSecurity Reference Manual

Syntax: SecTnpDir /path/to/dir

Example Usage: SecTnpDir /tnp

Processing Phase: N/A

Scope: Any

Dependencies/Notes: Needs to be writable by the Apache user process. This is the directory location

where Apache will swap data to disk if it runs out of memory (more data than what was specified in the
SecRequestBodylnMemoryLimit directive) during inspection.

SecUpl oadDi r

Description: Configuresthe directory where intercepted files will be stored.

Syntax: SecUpl oadDir /path/to/dir

Example Usage: SecUpl oadDir /tmp

Processing Phase: N/A

Scope: Any

Dependencies/Notes: This directory must be on the same filesystem as the temporary directory defined
with SecTrpDi r . Thisdirective is used with SecUpl oadKeepFi | es.

SecUpl oadKeepFi | es
Description: Configures whether or not the intercepted files will be kept after transaction is processed.
Syntax: SecUpl oadKeepFil es On| O f| Rel evant Only
Example Usage: SecUpl oadKeepFi | es On
Processing Phase: N/A
Scope: Any
Dependencies/Notes: This directive requires the storage directory to be defined (using
SecUpl oadDi r).
Possible values are:
* On - Keep uploaded files.
« O f - Do not keep uploaded files.

* Rel evant Onl y - Thiswill keep only those files that belong to requests that are deemed relev-
ant.

SecWebAppl d

Description: Creates a partition on the server that belongs to one web application.
Syntax: SecWebAppl d " NAMVE"

Example Usage: Sec\WebAppl d "WebAppl"

Processing Phase: N/A

Scope: Any

26

ModSecurity Reference Manual

Dependencies/Notes: Partitions are used to avoid collisions between session IDs and user IDs. This dir-
ective must be used if there are multiple applications deployed on the same server. If it isn't used, a colli-
sion between session |Ds might occur. The default valueis def aul t . Example:

<Virtual Host *:80>

Server Name appl. com

Server Ali as www. appl. com

SecWebAppl d " Appl”

SecRul e REQUEST COKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on set si d: %4 REQUEST COCKI ES. PHPSESSI D}

</ Vi r t ual Host >

<Virtual Host *: 80>

Server Nane app2. com

Server Al i as www. app2. com

SecWebAppl d " App2"

SecRul e REQUEST COXKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on set si d: %4 REQUEST COKI ES. PHPSESSI D}

</ Vi r t ual Host >

In the two examples configurations shown, SecWebAppld is being used in conjuction with the Apache
VirtualHost directives. What this achieves is to create more unique collection names when being hosted
on one server. Normally, when setsid is used, ModSecurity will create a collection with the name "SES-
SION" and it will hold the value specified. With using SecWebA ppld as shown in the examples, however,
the name of the collection would become "Appl SESSION" and "App2_SESSION".

SecWebAppld isrelevant in two cases:
1. You are logging transactions/aerts to the ModSecurity Console and you want to use the web
application ID to search only the transactions belonging to that application.

2. You are using the data persistence facility (collections SESSION and USER) and you need to
avoid collisions between sessions and users belonging to different applications.

27

ModSecurity Reference Manual

Processing Phases

ModSecurity 2.x allows rulesto be placed in one of the following five phases:

Request headers

Request body

Response headers

Response body

Logging

M odSecurity Processing Phases Diagram

Below is adiagram of the standard Apache Request Cycle. In the diagram, the 5 ModSecurity processing
phases are shown.

a &~ w bR

* ModSecurity Phase:1
2 | —R t Head
(wait) }—=| post-read-request cquest Headers
URI translation
\
k|
Header parsing
dleanup T
4
access control
ModSecurity Phase:5 authentication
Logging J
authorization
logging .
MIME type checking
rd
fixups ModSecurity Phase:2
0 Request Bod
~{ ResPONSE |«— y
ModSecurity Phase:4 D ModSecurity Phase:3
Response Body I " Response Headers

In order to select the phase a rule executes during, use the phase action either directly in the rule or in us-
ing the SecDef aul t Act i on directive:

SecDef aul t Acti on "Il og, pass, phase: 2"
SecRul e REQUEST HEADERS: Host "!~$" "deny, phase: 1"

28

ModSecurity Reference Manual

Note on Rule and Phases

Keep in mind that rules are executed according to phases, so even if two rules are adjacent in a configura-
tion file, but are set to execute in different phases, they would not happen one after the other. The order of
rulesin the configuration file isimportant only within the rules of each phase. Thisis especially important
when using the ski p action.

Phase Request Headers

Rules in this phase are processed immediately after Apache completes reading the request headers
(post-read-request phase). At this point the request body has not been read yet, meaning not all request ar-
guments are available. Rules should be placed in this phase if you need to have them run early (before
Apache does something with the request), to do something before the request body has been read, determ-
ine whether or not the request body should be buffered, or decide how you want the request body to be
processed (e.g. whether to parseit as XML or not).

Note

Rules in this phase can not leverage Apache scope directives (Directory, Location, LocationMatch, etc...)
as the post-read-request hook does not have this information yet. The exception here is the VirtualHost
directive. If you want to use ModSecurity rules inside Apache locations, then they should run in Phase 2.
Refer to the Apache Request Cycle/ModSecurity Processing Phases diagram.

Phase Request Body

Thisis the general-purpose input analysis phase. Most of the application-oriented rules should go here. In
this phase you are guaranteed to have received the request argument (provided the request body has been
read). ModSecurity supports three encoding types for the request body phase:

e application/x-ww-formurl encoded - used to transfer form data
e nultipart/formdata - usedfor filetransfers
e text/xm -usedforpassing XML data

Other encodings are not used by most web applications.

Phase Response Headers

This phase takes place just before response headers are sent back to the client. Run hereif you want to ob-
serve the response before that happens, and if you want to use the response headers to determine if you
want to buffer the response body. Note that some response status codes (such as 404) are handled earlier
in the request cycle by Apache and my not be able to be triggered as expected. Additionally, there are
some response headers that are added by Apache at a later hook (such as Date, Server and Connection)
that we would not be able to trigger on or sanitize. This should work appropirately in a proxy setup or
within phase:5 (logging).

Phase Response Body

29

ModSecurity Reference Manual

This is the general-purpose output analysis phase. At this point you can run rules against the response
body (provided it was buffered, of course). This is the phase where you would want to inspect the out-
bound html for information discloure, error messages or failed authentication text.

Phase Logging

This phase is run just before logging takes place. The rules placed into this phase can only affect how the
logging is performed. This phase can be used to inspect the error messages logged by Apache. You can
not deny/block connectionsin this phase asit istoo late. This phase also allows for inspection of other re-
sponse headers that weren't available during phase:3 or phase:4.

30

ModSecurity Reference Manual

Variables

The following variables are supported in ModSecurity 2.x:

ARGS

ARGS is a collection and can be used on its own (means all arguments including the POST Payload), with
a static parameter (matches arguments with that name), or with a regular expression (matches all argu-
ments with name that matches the regular expression). Note: ARGS: p will not result in any invocations
against the operator if argument p does not exist. Some variables are actually collections, which are ex-
panded into more variables at runtime. The following example will examine all request arguments:

SecRul e ARGS dirty

Sometimes, however, you will want to look only at parts of a collection. This can be achieved with the
help of the selection operator(colon). The following example will only look at the arguments named p
(do note that, in general, requests can contain multiple arguments with the same name):

SecRule ARGS:p dirty

It is also possible to specify exclusions. The following will examine al request arguments for the word
dirty, except the ones named z (again, there can be zero or more arguments named z):

SecRul e ARGS|!'ARGS: z dirty

There is a specia operator that allows you to count how many variables there are in a collection. The fol-
lowing rule will trigger if there is more than zero arguments in the request (ignore the second parameter
for the time being):

SecRul e &ARGS ! 70$

And sometimes you need to look at an array of parameters, each with a dightly different name. In this
case you can specify aregular expression in the selection operator itself. The following rule will look into
all arguments whose names beginwithi d_:

SecRul e ARGS:/"id_/ dirty

Note

In ModSecurity 1.X, the ARGS variable stood for QUERY_STRI NG+ POST_PAYLQAD, whereas
now it expandsto to individual variables.

ARGS_COMBI NED_SI ZE

This variable allows you to set more targeted evaluations on the total size of the Arguments as compared

31

ModSecurity Reference Manual

with normal Apache LimitRequest directives. For example, you could create a rule to ensure that the total
size of the argument data is below a certain threshold (to help prevent buffer overflow issues). Example:
Block request if the size of the arguments is above 25 characters.

SecRul e REQUEST FI LENAME "~/ cgi - bi n/ 1 ogi n\. php$" "chai n, | og, deny, phase: 2"
SecRul e ARGS_COMBI NED_SI ZE " @t 25"

ARGS_NAMES

Is a collection of the argument names. You can search for specific argument names that you want to
block. In a positive policy scenario, you can also whitelist (using an inverted rule with the ! character)
only authorized argument names. Example: This example rule will only alow 2 argument names - p and
a. If any other argument names are injected, it will be blocked.

SecRul e REQUEST_FI LENAME "/i ndex. php" "chai n, | og, deny, st at us: 403, phase: 2"
SecRul e ARGS NAMES "!“(p|a)$"

AUTH_TYPE

This variable holds the authentication method used to validate a user. Example:

SecRul e AUTH _TYPE "basi c" | og, deny, st atus: 403, phase: 1,t: | owercase

Note

This data will not be available in a proxy-mode deployment as the authentication is not local. In a proxy-
mode deployment, you would need to inpect the REQUEST_ _HEADERS: Aut hori zat i on header.

ENV

Collection, requires a single parameter (after a colon character). The ENV variable is set with setenv and
does not give access to the CGI environment variables. Example:

SecRul e REQUEST _FI LENAME "pri ntenv" pass, setenv:tag=suspi ci ous
SecRul e ENV: tag "suspi ci ous"

FI LES

Collection. Contains a collection of original file names (as they were called on the remote user's file sys-
tem). Note: only available if files were extracted from the request body. Example:

SecRul e FILES "\.conf$" | og, deny, status: 403, phase: 2

32

ModSecurity Reference Manual

FI LES_COVBI NED S| ZE

Single value. Total size of the uploaded files. Note: only available if files were extracted from the request
body. Example:

SecRul e FILES COVBI NED SI ZE "@t 1000" | og, deny, st at us: 403, phase: 2

FI LES_ NAMES

Collection w/o parameter. Contains a list of form fields that were used for file upload. Note: only avail-
ableif files were extracted from the request body. Example:

SecRul e FI LES_NAMES "~upfil e$" | og, deny, st atus: 403, phase: 2

FI LES_SI ZES

Collection. Contains a list of file sizes. Useful for implementing a size limitation on individual uploaded
files. Note: only available if files were extracted from the request body. Example:

SecRul e FILES SIZES "@t 100" | og, deny, st at us: 403, phase: 2

FI LES_TMPNAMES

Collection. Contains a collection of temporary files names on the disk. Useful when used together with
@ nspect Fi | e. Note: only availableif files were extracted from the request body. Example:

SecRul e FI LES TMPNAMES " @ nspectFil e /path/to/inspect_script.pl™

HTTP

This variable is a specia prefix that is followed by a header name and can be used to access any request
header. Example:

SecRul e HTTP_REFERER "ww\ . badsi t e\ . cont

Note

This variable is for backward-compatibilty with ModSecurity 1.X rules. It has been superceded by the
REQUEST HEADERS variable (REQUEST HEADERS:Headername)

MULTI PART_CRLF_LF LI NES

Thisflag variable will be set to 1 whenever a multipart request uses mixed line terminators. Thenul ti -
part/form dat a RFC requires CRLF sequence to be used to terminate lines. Since some client imple-

33

ModSecurity Reference Manual

mentations use only LF to terminate lines you might want to allow them to proceed under certain circum-
stances (if you want to do this you will need to stop using MULTI PART_STRI CT_ERROR and check
each multipart flag variable individually, avoding MULTI PART_LF_LI NE). However, mixing CRLF and
LF line terminators is dangerous as it can allow for evasion. Therefore, in such cases, you will have to
add a check for MULTI PART_CRLF_LF_LI NES.

MULTI PART_STRI CT_ERRCR

MULTI PART_STRI CT_ERRORwill be set to 1 when any of the following variablesis aso set to 1: RE-
@BODY_PROCESSOR_ERROR, MULTI PART_BOUNDARY_QUOTED, MULTI -
PART_BOUNDARY_WHI TESPACE, MJLTI PART_DATA BEFORE, MJILTI PART_DATA AFTER,
MULTI PART_HEADER FOLDI NG, MULTI PART_LF_LI NE, MULTI PART_SEM COLON_M SSI NG
Each of these variables covers one unusua (although sometimes legal) aspect of the request body in
mul ti part/formdata format. Your policies should always contain a rule to check either this
variable (easier) or one or more individual variables (if you know exactly what you want to accomplish).
Depending on the rate of false positives and your default policy you should decide whether to block or
just warn when the rule istriggered.

The best way to use this variableis asin the example below:

SecRul e MULTI PART_STRI CT_ERROR "! @q 0" \
"phase: 2,t:none, | og, deny, nsg: ' Mul ti part request body \
failed strict validation: \

PE % REQBODY_PROCESSOR_ERROR}, \

BQ % MULTI PART_BOUNDARY_QUOTED}, \

BW % MULTI PART_BOUNDARY_WHI TESPACE}, \

DB % MULTI PART_DATA BEFORE}, \

DA % MULTI PART_DATA AFTER}, \

HF %4 MULTI PART_HEADER FOLDI NG, \

LF 9% MULTI PART_LF LI NE}, \

SM % MULTI PART_SEM COLON_M SSI NG ' "

Themul tipart/form data parser has been upgraded in ModSecurity v2.1.3 to actively look for
signs of evasion. Many variables (as listed above) were added to expose various facts discovered during
the parsing process. The MULTI PART_STRI CT_ERROR variable is handy to check on al abnormalities
at once. The individual variables alow detection to be fine-tuned according to your circumstances in or-
der to reduce the number of false positives. Detailed analysis of various evasion techniques covered will
be released as a separated document at a later date.

MULTI PART_UNVATCHED BOUNDARY

Set to 1 when, during the parsing phase of arul ti part/request - body, ModSecurity encounters
what feels like a boundary but it is not. Such an event may occur when evasion of ModSecurity is attemp-
ted.

The best wasy to use this variable is as in the example below:

34

ModSecurity Reference Manual

SecRul e MULTI PART_UNVATCHED _BOUNDARY "! @q 0" \

"phase: 2,t: none, | og, deny, msg: ' Mul ti part parser detected a possible unmatched boundary.'"

Change the rule from blocking to logging-only if many false positives are encountered.

PATH_| NFO

Besides passing query information to a script/handler, you can also pass additional data, known as extra
path information, as part of the URL. Example:

SecRul e PATH_I NFO "~/ (bi n| et c| sbi n| opt | usr)™"

QUERY_STRI NG

This variable holds form data passed to the script/handler by appending data after a question mark. Warn-
ing: Not URL-decoded. Example:

SecRul e QUERY_STRI NG "at t ack"

REMOTE_ADDR

This variable holds the I P address of the remote client. Example:

SecRul e REMOTE_ADDR "7192\.168\.1\.101%"

REMOTE_HOST

If Hostnamel ookUps are set to On, then this variable will hold the DNS resolved remote host name. If it
is set to Off, then it will hold the remote IP address. Possible uses for this variable would be to deny
known bad client hosts or network blocks, or conversely, to allow in authorized hosts. Example:

SecRul e REMOTE_HOST "\. evi |l \. net wor k\ or g$"

REMOTE_PORT

This variable holds information on the source port that the client used when initiating the connection to
our web server. Example: in this example, we are evaluating to see if the REMOTE _PORT is less than
1024, which would indicate that the user is a privileged user (root).

SecRul e REMOTE_PORT "@t 1024" phase: 1,1 og, pass, setenv: renote_port=privil eged

35

ModSecurity Reference Manual

REMOTE_USER

This variable holds the username of the authenticated user. If there are no password (basic|digest) access
controlsin place, then this variable will be empty. Example:

SecRul e REMOTE_USER "admi n"

Note
This datawill not be available in a proxy-mode deployment as the authentication is not local.

REQBODY_PROCESSOR

Built-in processors are URLENCODED, MULTI PART, and XM.. Example:

SecRul e REQBODY_ PROCESSOR "~XM.$ chain
SecRul e XM_ " @al i dat eDTD / opt / apache-frontend/ conf/xm . dtd"

REQBODY PROCESSOR ERRCR

Possible values are 0 (no error) or 1 (error). This variable will be set by request body processors (typicaly
themul ti part/request - dat a parser or the XML parser) when they fail to properly parse a request

payload.
Example:

SecRul e REQBODY_PROCESSCR_ERRCR " @q 1" deny, phase: 2

Note

Y our policies must have a rule to check REQBODY _PROCESSOR_ERROR at the beginning of
phase 2. Failure to do so will leave the door open for impedance mismatch attacks. It is possible,
for example, that a payload that cannot be parsed by ModSecurity can be successfully parsed by
more tolerant parser operating in the application. If your policy dictates blocking then you should
reject the request if error is detected. When operating in detection-only mode your rule should
alert with high severity when request body processing fails.

REQBODY PROCESSOR ERROR MBG

Empty, or contains the error message from the processor. Example:

SecRul e REQBODY_ PROCESSOR ERRCR MSG "failed to parse" t:lowercase

REQUEST _BASENANE

36

ModSecurity Reference Manual

This variable holds just the filename part of REQUEST _FI LENAME (e.g. index.php). Warning: not url-
Decoded. Example:

SecRul e REQUEST_BASENAME "l ogi n\. php$"

REQUEST_BCODY

This variable holds the data in the request body (including POST_PAYLOAD data). REQUEST_BODY
should be used if the original order of the arguements is important (ARGS should be used in all other
cases). Example:

SecRul e REQUEST_BQODY "~user name=\wW 25, }\ &asswor d=\ w{ 25, }\ &Submi t\ =l ogi n$"

Note
Thisvariableisonly availableif the content type is application/x-www-form-urlencoded.

REQUEST COOKI ES

This variable is a collection of al of the cookie data. Example: the following example is using the Am-
persand special operator to count how many variables are in the collection. In this rule, it would trigger if
the request does not include any Cookie headers.

SecRul e &REQUEST_COKI ES " @q 0"

REQUEST _COOKI ES_NAMES

This variable is a collection of the cookie names in the request headers. Example: the following rule will
trigger if the JISESSIONID cookieis not present.

SecRul e &REQUEST_COCKI ES_NAMES: JSESSIONI D " @q 0"

REQUEST FI LENANVE

This variable holds the relative REQUEST_URI minus the QUERY _STRING part (e.g. /index.php). Ex-
ample:

SecRul e REQUEST_FI LENAME "~/ cgi - bi n/ 1 ogi n\. php$"

REQUEST _HEADERS

This variable can be used as either a collection of all of the Request Headers or can be used to specify in-
divudual headers (by using REQUEST_HEADERS:Header-Name). Example: the first example uses RE-
QUEST_HEADERS as acollection and is applying the validateUrl Encoding operator against all headers.

37

ModSecurity Reference Manual

SecRul e REQUEST_HEADERS " @al i dat eUr | Encodi ng"

Example: the second example is targeting only the Host header.

SecRul e REQUEST HEADERS: Host "~[\d\.]+$" \
"deny, | og, st at us: 400, n8g: ' Host header is a nuneric |P address'"”

REQUEST HEADERS NAMES

Thisvariableis acollection of the names of al of the Request Headers. Example:

SecRul e REQUEST_ HEADERS NAMES " ~x-f orwar ded-for" \
"l og, deny, status: 403, t: | owercase, msg: ' Proxy Server Used'"

REQUEST _LI NE

This variable holds the complete request line sent to the server (including the REQUEST _METHOD and
HTTP version data). Example: this example rule will trigger if the request method is something other than
GET, HEAD, POST or if the HTTP is something other than HTTP/0.9, 1.0 or 1.1.

SecRul e REQUEST_LINE "! (~((?:(?:pos|ge)t|head))|http/(0\.9]1\.0|1\.2)$)"

Note

Due to the default action transformation function lowercase, the regex strings should be in lowercase as
well unless the t:none transformation function is specified for this particular rule.

REQUEST METHOD

This variable holds the Request Method used by the client. Example: the following example will trigger if
the Request Method is either CONNECT or TRACE.

SecRul e REQUEST METHOD "~((?: connect|trace))$"

Note

Due to the default action transformation function lowercase, the regex strings should be in lowercase as
well unless the t:none transformation function is specified for this particular rule.

REQUEST PROTOCOL
This variable holds the Request Protocol Version information. Example:

SecRul e REQUEST_PROTOCOL "!“http/ (O\. 9] 1\.0| 1\.1)$"

Note

38

ModSecurity Reference Manual

Due to the default action transformation function lowercase, the regex strings should be in lowercase as
well unless the t:none transformation function is specified for this particular rule.

REQUEST _URI

This variable holds the full URL including the QUERY _STRING data (e.g. /index.php?p=X), however it
will never contain a domain name, even if it was provided on the request line. Warning: not urlDecoded.
It also does not include either the REQUEST_METHOD or the HTTP version info. Example:

SecRul e REQUEST_URI "attack"

REQUEST URI _RAW

Same as REQUEST_URI but will contain the domain name if it was provided on the request line (e.g. ht-
tp://www.example.com/index.php?p=X). Warning: not urlDecoded. Example:

SecRul e REQUEST URI _RAW"http: /"

RESPONSE_BODY

This variable holds the data for the response payload. Example:

SecRul e RESPONSE_BODY " CDBC Error Code"

RESPONSE_HEADERS

This variable is similar to the REQUEST HEADERS variable and can be used in the same manner. Ex-
ample:

SecRul e RESPONSE_HEADERS: X- Cache "M SS"

Note

This variable may not have access to some headers when running in embedded-mode. Headers such as
Server, Date, Connection and Content-Type are added during a later Apache hook just prior to sending
the data to the client. This data should be available, however, either during ModSecurity phase:5
(logging) or when running in proxy-mode.

RESPONSE HEADERS NANMES
Thisvariable isa collection of the response header names. Example;

SecRul e RESPONSE_HEADERS NAMES " Set - Cooki e"

Note

39

ModSecurity Reference Manual

Same limitations as RESPONSE HEADERS with regards to access to some headers in embedded-mode.

RESPONSE PROTOCOL

This variable holds the HTTP Response Protocol information. Example:

SecRul e RESPONSE_PROTOCCL "~HTTP\/O\. 9"

RESPONSE_STATUS

This variable holds the HTTP Response Status Code generated by Apache. Example:

SecRul e RESPONSE_STATUS "~[45] "

Note

This directive may not work as expected in embedded-mode as Apache handles many of the stock re-
sponse codes (404, 401, etc...) earlier in Phase 2. This variable should work as expected in a proxy-mode
deployment.

RULE

This variable provides accessto thei d,r ev,severity, and nsg fields of the rule that triggered the ac-
tion. Only available for expansion in action strings (e.g.set var: t x. var name=%rul e. i d}). Ex-
ample:

SecRul e &REQUEST HEADERS: Host " @q 0" "l og, deny, setvar:tx. varname=%rule.id}"

SCRI PT_BASENAIVE

This variable holds just the local filename part of SCRIPT_FILENAME. Example:

SecRul e SCRI PT_BASENAME "“l ogi n\ . php$"

Note
Thisvariable is not available in proxy mode.

SCRI PT_FI LENANME

This variable holds the full path on the server to the requested script. (e.g. SCRIPT_NAME plus the serv-
er path). Example:

SecRul e SCRI PT_FI LENAME "~/ usr/ | ocal / apache/ cgi - bi n/| ogi n\. php$"

Note

40

ModSecurity Reference Manual

Thisvariableis not available in proxy mode.

SCRI PT_G D

This variable holds the groupid (numerical value) of the group owner of the script. Example:

SecRul e SCRIPT_ G D "!746%"

Note
Thisvariableis not available in proxy mode.

SCRI PT_GROUPNANE

This variable holds the group name of the group owner of the script. Example:

SecRul e SCRI PT_GROUPNAME "!“apache$"

Note
Thisvariableis not available in proxy mode.

SCRI PT_MODE

This variable holds the script's permissions mode data (numerical - 1=execute, 2=write, 4=read and
7=read/write/execute). Example: will trigger if the script has the WRITE permissions set.

SecRul e SCRI PT_MODE "~(2| 3| 6] 7) $"

Note
Thisvariableis not available in proxy mode.

SCRI PT_UI D

This variable holds the userid (numerical value) of the owner of the script. Example: the example rule be-
low will trigger if the UID is not 46 (the Apache user).

SecRul e SCRIPT_U D "!~ 46%"

Note
Thisvariable is not available in proxy mode.

SCRI PT_USERNANE

This variable holds the username of the owner of the script. Example:

SecRul e SCRI PT_USERNAME "! “apache$"

41

ModSecurity Reference Manual

Note
Thisvariableis not available in proxy mode.

SERVER _ADDR

This variable contains the | P address of the server. Example:

SecRul e SERVER ADDR "~192\.168\.1\. 100$"

SERVER NANE

This variable contains the server's hostname or 1P address. Example:

SecRul e SERVER NAME " host nane\ . cons"

Note
This datais taken from the Host header submitted in the client request.

SERVER PORT

This variable contains the local port that the web server islistening on. Example:

SecRul e SERVER PORT "~80%"

SESSI ON

This variable is a collection, available only after set si d is executed. Example: the following example
shows how to initialize a SESSION collection with setsid, how to use setvar to increase the session.score
values, how to set the session.blocked variable and finally how to deny the connection based on the ses-
sion:blocked value.

SecRul e REQUEST COXKI ES: PHPSESSI D ! ~$ chai n, nol og, pass

SecActi on set si d: %4 REQUEST_COCKI ES. PHPSESSI D}

SecRul e REQUEST_URI "~/ cgi-bin/finger$" "pass,| og, setvar: session. score=+10"
SecRul e SESSI ON: SCORE " @t 50" "pass,| og, setvar: sessi on. bl ocked=1"

SecRul e SESSI ON: BLOCKED " @q 1" "Il og, deny, st at us: 403"

SESSI ONI D

Thisvariableisthe value set with set si d. Example:

SecRul e SESSI ONI D ! ~$ chai n, nol og, pass
SecRul e REQUEST_COOKI ES: PHPSESSI D ! $
SecActi on set si d: %4 REQUEST COCKI ES. PHPSESSI D}

42

ModSecurity Reference Manual

T ME

This variable holds aformatted string representing the time (hour:minute:second). Example:

SecRul e TIME "~(([1](8]9))]([2](0]1]2]3))):\d{2}:\d{2}$"

TI ME_DAY

This variable holds the current date (1-31). Example: this rule would trigger anytime between the 10th
and 20th days of the month.

SecRul e TIME_DAY “~(([1](0] 1] 2| 3| 4|5| 6] 7| 8] 9))]|20)$"

TI ME_EPOCH

This variable holds the time in seconds since 1970. Example:

SecRul e TI ME_EPOCH " @t 1000"

TI ME_HOUR

This variable holds the current hour (0-23). Example: this rule would trigger during "off hours".

SecRul e TIME_HOUR "~(0| 1] 2| 3| 4] 5| 6/ [1] (8] 9)|[2] (0] 1] 2| 3)) $"

TIME M N

This variable holds the current minute (0-59). Example: this rule would trigger during the last half hour of
every hour.

SecRule TIME_M N "~(3]|4|5)"

TI ME_MON
This variable holds the current month (0-11). Example: this rule would match if the month was either
November (10) or December (11).

SecRul e TI ME_MON "~1"

TI ME_SEC

This variable holds the current second count (0-59). Example:

43

ModSecurity Reference Manual

SecRul e TI ME_SEC "@t 30"

TI ME_WDAY

This variable holds the current weekday (0-6). Example: this rule would trigger only on week-ends
(Saturday and Sunday).

SecRul e TI ME_WDAY "~(0]| 6) $"

TI ME_YEAR

This variable holds the current four-digit year data. Example:

SecRul e TI ME_YEAR "~2006%"

X

Transaction Collection. Thisis used to store pieces of data, create a transaction anomaly score, and so on.
Transaction variables are set for 1 request/response cycle. The scoring and evaluation will not last past the
current request/response process. Example: In this example, we are using setvar to increase the tx.score
value by 5 points. We then have a follow-up run that will evaluate the transactional score this this request
and then it will decided whether or not to allow/deny the request through.

SecRul e WEBSERVER ERROR LOG "does not exist" "phase: 5, pass, setvar:tx.score=+5"
SecRul e TX: SCORE " @t 20" deny, | og

USERI D

Thisvariableisthe value set with set ui d. Example:

SecActi on set ui d: 9% REMOTE_USER} , nol og
SecRul e USERI D " Admi n"

VEEBAPPI D

Thisvariableisthe value set with SecWebAppl d. Example:

SecWebAppl d " WebAppl"
SecRul e WEBAPPI D "WebAppl" "chai n, | og, deny, st at us: 403"
SecRul e REQUEST_HEADERS: Tr ansf er - Encodi ng "!"$"

ModSecurity Reference Manual

WEBSERVER ERROR LOG

Contains zero or more error messages produced by the web server. Access to this variable is in phase:5
(logging). Example:

SecRul e WEBSERVER _ERROR LOG "Fil e does not exist" "phase:5, setvar:tx.score=+5"

XM

Can be used standalone (as a target for validateDTD and validateSchema) or with an XPath expression
parameter (which makesit avalid target for any function that accepts plain text). Example using X Path:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST HEADERS: Cont ent - Type ~text/xm $ \
phase: 1, t: | ower case, nol og, pass, ctl : request BodyPr ocessor =XM.
SecRul e REQBODY_PROCESSOR "! AXM.$" ski p: 2
SecRul e XM.:/ enpl oyees/ enpl oyee/ nane/text () Fred
SecRul e XM.:/ xq: enpl oyees/ enpl oyee/ nane/text () Fred \
xm ns: xq=htt p: // ww. exanpl e. conf enpl oyees

The first XPath expression does not use namespaces. It would match against payload such as this one:

<enpl oyees>
<enpl oyee>

<name>Fred Jones</ nanme>

<address | ocati on="hone" >
<street >900 Aurora Ave.</street>
<city>Seattle</city>
<st at e>WA</ st at e>
<zi p>98115</ zi p>

</ addr ess>

<address | ocati on="wor k">
<street >2011 152nd Avenue NE</street>
<ci ty>Rednond</ci ty>
<st at e>\WWA</ st at e>
<zi p>98052</ zi p>

</ addr ess>

<phone | ocati on="wor k" >(425) 555- 5665</ phone>

<phone | ocati on="hone" >(206) 555- 5555</ phone>

<phone | ocati on="nobi | e">(206) 555-4321</ phone>

</ enpl oyee>
</ enpl oyees>

The second X Path expression does use namespaces. It would match the following payload:

<xq: enpl oyees xm ns: xqg="http://ww. exanpl e. conl enpl oyees" >
<enpl oyee>
<name>Fred Jones</nane>

45

ModSecurity Reference Manual

<addr ess | ocati on="hone" >
<street >900 Aurora Ave.</street>
<city>Seattle</city>
<st at e>WA</ st at e>
<zi p>98115</ zi p>
</ addr ess>
<address | ocati on="work">
<street>2011 152nd Avenue NE</street>
<ci ty>Rednond</ci ty>
<st at e>WA</ st at e>
<zi p>98052</ zi p>
</ addr ess>
<phone | ocati on="wor k" >(425) 555- 5665</ phone>
<phone | ocati on="hone" >(206) 555- 5555</ phone>
<phone | ocati on="nobi | e">(206) 555- 4321</ phone>
</ enpl oyee>
</ xq: enpl oyees>

Note the different namespace used in the second example.
To learn more about X Path we suggest the following resources:
1. XPath Standard [http://www.w3.org/TR/xpath]
2. XPath Tutorial [http://www.zvon.org/xxI/X PathTutorial/General/exampl es.html]

46

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

ModSecurity Reference Manual

Transformation functions

When ModSecurity receives request or response information, it makes a copy of this data and placesit in-
to memory. It is on this data in memory that transformation functions are applied. The raw request/re-
sponse datais never atered. Transformation functions are used to transform a variable before testing it in
arule.

Note

The default transformation function setting is - lowercase, replaceNulls and compresswWhitespace (in this
order).

The following rule will ensure that an attacker does not use mixed case in order to evade the M odSecurity
rule:

SecRul e ARG p "xp_cndshel | " "t: | owercase”

multiple tranformation actions can be used in the same rule, for example the following rule also ensures
that an attacker does not use URL encoding (%xx encoding) for evasion. Note the order of the transform-
ation functions, which ensures that a URL encoded letter is first decoded and than trandated to lower
case.

SecRul e ARG p "xp_cndshel | ™ "t:url Decode,t: | owercase"

One can use the SetDefaultAction command to ensure the trandation occurs for every rule until the next.
Note that translation actions are additive, so if a rule explicitly list actions, the tranglation actions set by
SetDefaultAction are still performed.

SecDefaul t Action t:url Decode, t:| owercase

The following transformation functions are supported:

base64Decode

This function decoes a base64-encoded string.

base64Encode
This function encodes input string using base64 encoding.

conpr ess\Wi t espace

This function is enabled by default. It converts whitespace characters (32, \f, \t, \n, \r, \v, 160) to spaces
(ASCII 32) and then compresses multiple space characters into only one.

escapeSeqDecode

47

ModSecurity Reference Manual

This function decode ANSI C escape sequences. \a, \b,\f,\n,\r,\t,\v,\ VA2 0" A" A\ xHH
(hexadecimal), \ 0000 (octal). Invalid encodings are left in the output.

hexDecode

This function decodes a hex-encoded string.

hexEncode

This function encodes input as hex-encoded string.

ht ml Enti t yDecode

This function decodes HTML entities present in input. The following variants are supported:

o &#xHHand &#xHH; (whereH isany hexadecimal number)
e &#DDDand &#DDD; (where D isany decimal number)

e " and " ;

e and

e &tand<

e > and > ;

| ower case

Thisfunction is enabled by default. It converts all charactes to lowercase using the current C locale.

md5

This function calculates an MD5 hash from input.

none

This not an actual transformation function but an instruction to ModSecurity to remove all transformation
functions associated with the current rule and start from scratch.

nor mal i sePat h

This function will remove multiple slashes, self-references and directory back-references (except when
they are at the beginning of the path).

nor mal 1 sePat hW n
Same as normalisePath, but will first convert backsash characters to forward slashes.

renoveNul | s

48

ModSecurity Reference Manual

This function removes NULL bytes from input.

renoveWi t espace

This function removes al whitespace characters.

repl aceComment s

This function replaces each occurence of a C-style comments (/* ... */) with a single space
(multiple consecutive occurences of a space will not be compressed). Unterminated comments will too be
replaced with a space (ASCII 32). However, a standalone termination of a comment (* /) will not be ac-
ted upon.

repl aceNul I's
Thisfunction is enabled by default. It replaces NULL bytesin input with spaces (ASCII 32).

ur | Decode

This function decodes an URL-encoded input string. Invalid encodings (i.e. the ones that use non-
hexadecimal characters, or the ones that are at the end of string and have one or two characters missing)
will not be converted. If you want to detect invalid encodings use the @ al i dat eUr | Encodi ng oper-
ator. The transformational function should not be used against variables that have aready been URL-
decoded unlessit is your intention to perform URL decoding twice!

ur | DecodeUni

In addition to decoding %xx like ur | Decode, url DecodeUni also decodes %uXXXX encoding. If
the code is in the range of FFO1-FF5E (the full width ASCII codes), then the higher byte is used to detect
and adjust the lower byte. Otherwise, only the lower byte will be used and the higher byte zeroed.

ur |l Encode

This function encodes input using URL encoding.

shal

This function calculates a SHA 1 hash from input.

49

ModSecurity Reference Manual

Actions

Each action belongs to one of five groups:
1. Disruptive actions - are those actions where ModSecurity will intercept the data. They can only
appear inthefirst rulein achain.
Non-disruptive actions - can appear anywhere.
Flow actions - can appear only in the first rule in achain.
Meta-data actions(i d, rev, severity, nsg) - canonly appear inthefirst rulein achain.

g M~ W DN

Data actions - can appear anywhere; these actions are completely passive and only serve to
carry data used by other actions.

al | ow

Description: Stops processing on a successful match and allows transaction to proceed.
Action Group: Disruptive

Example:

SecRul e REMOTE_ADDR "7192\. 168\. 1\. 100%$" nol og, phase: 1, al | ow

Note

The allow action only applies to the current processing phase. If your intent is to explicitly alow are-
quest, then you should use the "ctl" action to turn the ruleEngine off - ct | : r ul eEngi ne=CF f .

audi t | og

Description: Marks the transaction for logging in the audit log.
Action Group: Non-Disruptive

Example:

SecRul e REMOTE_ADDR "~192\.168\. 1\. 100%$" auditl og, phase: 1, al | ow

Note
The auditlog action is now explicit if log is aready specified.

capt ure

Description: When used together with the regular expression operator, capture action will create copies
of regular expression captures and place them into the transaction variable collection. Up to ten captures
will be copied on a successful pattern match, each with a name consisting of adigit from0to 9.

Action Group: Non-Disruptive
Example:

50

ModSecurity Reference Manual

SecRul e REQUEST_BODY "~usernanme=(\w{25,})" phase: 2, capture,t:none, chain
SecRule TX:1 "(?:(?:a(dm n| nonynous)))"

Note
The 0 data captures the entire REGEX match and 1 captures the datain the first parantheses, etc...

chai n

Description: Chains the rule where the action is placed with the rule that immediately follows it. The res-
ult is called a rule chain. Chained rules allow for more complex rule matches where you want to use a
number of different VARIABLES to create a better rule and to help prevent fal se positives.

Action Group: Flow
Example:

Refuse to accept POST requests that do
not specify request body |ength

SecRul e REQUEST METHOD ~POST$ chain
SecRul e REQUEST_HEADER: Cont ent - Length ~$

Note

In programming language concepts, think of chained rules somewhat similar to AND conditional state-
ments. The actions specified in the first portion of the chained rule will only be triggered if all of the vari-
able checks return positive hits. If one aspect of the chained rule is negative, then the entire rule chain is
negative. Also note that disruptive actions, execution phases, metadata actions (id, rev, msg) and skip ac-
tions can only be specified on by the chain starter rule.

ctl

Description: The ctl action allows configuration options to be updated for the transaction.
Action Group: Non-Disruptive

Example:

Parse requests with Content-Type "text/xm" as XM
SecRul e REQUEST_ CONTENT_TYPE ~text/xm nol og, pass, ctl:request BodyPr ocessor =XM

Note

The following configuration options are supported:
audi t Engi ne

audi t LogParts

debuglLogLevel

request BodyAccess

a b~ 0N

request BodyLi mi t

51

ModSecurity Reference Manual

6. request BodyProcessor

7. responseBodyAccess

8. responseBodylLi mt

9. rul eEngi ne
With the exception of r equest BodyPr ocessor , each configuration option corresponds to one con-
figuration directive and the usage isidentical.

The requestBodyProcessor option allows you to configure the request body processor. By default ModSe-
curity will use the URLENCODED and MULTI PART processors to process an applicati on/

x-wwwform url encoded and arul ti part/for m dat a body, respectively. A third processor,
XML, isalso supported, but it is never used implicitly. Instead you must tell ModSecurity to useit by pla-
cing afew rulesin the REQUEST HEADERS processing phase. After the request body was processed as
XML you will be ableto use the XML-related features to inspect it.

Request body processors will not interrupt a transaction if an error occurs during parsing. Instead they
will set variables REQBODY_PROCESSCOR _ERRCR and REQBODY_PROCESSOR_ERROR_MSG
These variables should be inspected in the REQUEST _BODY phase and an appropriate action taken.

deny

Description: Stops rule processing and intercepts transaction.
Action Group: Disruptive

Example:

SecRul e REQUEST HEADERS: User - Agent "ni kto" "I og, deny, nsg: ' Ni kto Scanners I|dentified "

depr ecat evar

Description: Decrement counter based on its age.
Action Group: Non-Disruptive
Example: The following example will decrement the counter by 60 every 300 seconds.

SecActi on deprecat evar: sessi on. scor e=60/ 300

Note
Counter values are aways positive, meaning the value will never go below zero.

drop

Description: Immediately initiate a "connection close”" action to tear down the TCP connection by send-
ing aFIN packet.

Action Group: Disruptive
Example: The following example initiates an IP collection for tracking Basic Authentication attempts. If

52

ModSecurity Reference Manual

the client goes over the threshold of more than 25 attempts in 2 minutes, it will DROP subsequent con-
nections.

SecAction initcol:ip=%REMOTE_ADDR}, nol og
SecRul e ARGS:login "!"$" \

nol og, phase: 1, setvar:ip. auth_attenpt=+1, deprecat evar:ip. auth_attenpt =20/ 120
SecRul e | P: AUTH ATTEMPT " @t 25" \

| og, drop, phase: 1, nsg: ' Possi bl e Brute Force Attack"

Note

This action is extremely useful when responding to both Brute Force and Denial of Service attacksin that,
in both cases, you want to minimize both the network bandwidth and the data returned to the client. This
action causes error message to appear in the log "(9)Bad file descriptor: core_output_filter: writing data to
the network"

exec

Description: Executes an external script/binary supplied as parameter.
Action Group: Non-Disruptive
Example:

SecRul e REQUEST _URI "~/cgi-bin/script\.pl" \
"l og, exec: /usr/| ocal / apache/ bi n/t est. sh, phase: 1"

Note

This directive does not effect a primary action if it exists. This action will always call script with no para-
meters, but providing all information in the environment. All the usual CGI environment variables will be
there. You can have one binary executed per filter match. Execution will add the header
mod_security-executed to the list of request headers. Y ou should be aware that forking a threaded process
results in al threads being replicated in the new process. Forking can therefore incur larger overhead in
multithreaded operation. The script you execute must write something (anything) to stdout. If it doesn't
ModSecurity will assume execution didn't work.

expi revar

Description: Configurescollection variable to expire after the given time in seconds.
Action Group: Non-Disruptive
Example:

SecRul e REQUEST_COCKI ES: JSESSI ONI D "! ~$" nol og, phase: 1, pass, chai n
SecAction setsi d: %4 REQUEST_COCKI ES: JSESSI ONI D}
SecRul e REQUEST_URI "~/ cgi-bin/script\.pl" \
"l og, al | ow, set var: sessi on. suspi ci ous=1, expi revar: sessi on. suspi ci ous=3600, phase: 1"

53

ModSecurity Reference Manual

Note

You should use expirevar actions at the same time that you use setvar actions in order to keep the in-
dended expiration time. If they are used on their own (perhaps in a SecAction directive) the expire time
could get re-set. When variables are removed from collections, and there are no other changes, collections
are not written to disk at the end of request. This is because the variables can always be expired again
when the collection is read again on a subsequent request.

i d

Description: Assignsaunique ID to the rule or chain.
Action Group: Metadata

Example:

SecRul e &REQUEST_HEADERS: Host " @q 0" \
"l og, i d: 60008, severity: 2, msg: ' Request M ssing a Host Header'"

Note
These are the reserved ranges:
o 1-99,999; reserved for local (internal) use. Use as you see fit but do not use this range for rules
that are distributed to others.

» 100,000-199,999; reserved for internal use of the engine, to assign to rules that do not have ex-
plicit IDs.

» 200,000-299,999; reserved for rules published at modsecurity.org.

» 300,000-399,999; reserved for rules published at gotroot.com.

e 400,000-419,999; unused (available for reservation).

e 420,000-429,999; reserved for ScallyWhack [http://projects.otakud2.de/wiki/ScallyWhack].

* 430,000-899,999; unused (available for reservation).

e 900,000-999,999; reserved for the Core Rules [http://www.modsecurity.org/projects/rules]
project.

» 1,000,000 and above; unused (available for reservation).

| nitcol
Description: Initialises a named persistent collection, either by loading data from storage or by creating a
new collection in memory.

Action Group: Non-Disruptive
Example: The following example initiates | P address tracking.

SecAction initcol:ip=%REMOTE ADDR}, nol og

Note

http://projects.otaku42.de/wiki/ScallyWhack
http://www.modsecurity.org/projects/rules/

ModSecurity Reference Manual

Every collection contains several built-in variables that are read-only:

CREATE_TI ME - date/time of the creation of the collection.

KEY - the value of theinitcol variable (the client's | P address in the example).
LAST_UPDATE_TI ME - date/time of the last update to the collection.

TI MEQUT - date/time in seconds when the collection will be updated on disk from memory (if
no other updates occur).

5. UPDATE_COUNTER - how many times the collection has been updated since creation.
6. UPDATE_RATE - isthe average rate updates per minute since creation.

A w0 D P

Collections are loaded into memory when the initcol action is encountered. The collection in storage will
be updated (and the appropriate counters increased) only if it was changed during transaction processing.

Note
To create a collection to hold session variables (SESSI ON) use action set si d. To create a col-
lection to hold user variables (USER) use action set ui d.

Note
At thistimeitisonly possible to have three collections. | P, SESSI QN, and USER.

| og

Description: Indicates that a successful match of the rule needs to be logged.
Action Group: Non-Disruptive
Example:

SecAction initcol:ip=%4REMOTE ADDR}, | og

Note
This action will log matches to the Apache error log file and the ModSecurity audit log.

nmsg

Description: Assigns a custom message to the rule or chain.
Action Group: Metadata

Example:

SecRul e &REQUEST HEADERS: Host " @q 0" \
"l og, i d: 60008, severity: 2, msg: ' Request M ssing a Host Header'"

Note
The msg information appears in the error and/or audit log files and is not sent back to the client in re-

55

ModSecurity Reference Manual

sponse headers.

mul ti Mat ch

Description: If enabled ModSecurity will perform multiple operator invocations for every target, before
and after every anti-evasion transformation is performed.

Action Group: Non-Disruptive
Example:

SecDef aul t Acti on | og, deny, phase: 1,t:renmoveNul | s, t: | owercase
SecRul e ARGS "attack" rmnultiMatch

Note

Normally, variables are evaluated once, only after al transformation functions have completed. With
multiMatch, variables are checked against the operator before and after every transformation function that
changes the input.

noaudi t | og

Description: Indicates that a successful match of the rule should not be used as criteria whether the trans-
action should be logged to the audit log.

Action Group: Non-Disruptive
Example:

SecRul e REQUEST HEADERS: User - Agent "Test" al |l ow, noaudi t| og

Note

If the SecAuditEngineis set to On, al of the transactions will be logged. If it is set to RelevantOnly, then
you can control it with the noauditlog action. Even if the noauditlog action is applied to a specific rule
and a rule either before or after triggered an audit event, then the tranaction will be logged to the audit
log. The correct way to disable audit logging for the entire transaction is to use
"ctl:auditEngi ne=Orf"

nol og

Description: Prevents rule matches from appearing in both the error and audit logs.
Action Group: Non-Disruptive
Example:

SecRul e REQUEST HEADERS: User - Agent "Test" al | ow, nol og

Note
The nolog action also implies noauditlog.

56

ModSecurity Reference Manual

pass
Description: Continues processing with the next rule in spite of a successful match.
Action Group: Disruptive

Example:

SecRul e REQUEST_ HEADERS: User - Agent "Test" | og, pass

Note
Transaction will not be interrupted but it will be logged (unless logging has been suppressed).

pause
Description: Pauses transaction processing for the specified number of milliseconds.
Action Group: Disruptive

Example:

SecRul e REQUEST HEADERS: User - Agent "Test" | og, deny, st at us: 403, pause: 5000

Note

This feature can be of limited benefit for slowing down Brute Force Scanners, however use with care. If
you are under a Denial of Service type of attack, the pause feature may make matters worse as this feature
will cause child processesto sit idle until the pause is compl eted.

phase

Description: Placesthe rule (or the rule chain) into one of five available processing phases.
Action Group: Disruptive

Example:

SecDef aul t Acti on | og, deny, phase: 1,t:renoveNul | s, t: | owercase
SecRul e REQUEST_HEADERS: User - Agent "Test" | og, deny, stat us: 403

Note

Keep in mind that is you specify the incorrect phase, the target variable that you specify may be empty.
This could lead to a false negative situation where your variable and operator (RegEx) may be correct, but
it misses malicious data because you specified the wrong phase.

pr oxy

Description: Intercepts transaction by forwarding request to another web server using the proxy backend.
Action Group: Disruptive

Example:

57

ModSecurity Reference Manual

SecRul e REQUEST HEADERS: User - Agent "Test" | og, proxy: http://ww. honeypot host. coni

Note

For this action to work, mod_proxy must also be installed. This action is useful if you would like to proxy
matching requests onto a honeypot webserver.

redirect

Description: Intercepts transaction by issuing aredirect to the given location.
Action Group: Disruptive

Example:

SecRul e REQUEST_HEADERS: User - Agent "Test" \
| og, redirect: http://ww. host nane. cont fail ed. htm

Note

If the st at us action is present and its value is acceptable (301, 302, 303, or 307) it will be used for the
redirection. Otherwise status code 302 will be used.

rev

Description: Specifiesrulerevision.
Action Group: Metadata

Example:

SecRul e REQUEST METHOD "~PUT$" "id: 340002, rev: 1, severity:2,nsg:"' Restricted HITP function'"

Note

This action is used in combination with the i d action to allow the same rule ID to be used after changes
take place but to still provide some indication the rule changed.

sanitiseArg

Description: Sanitises (replaces each byte with an asterisk) a named request argument prior to audit 1og-
ging.

Action Group: Non-Disruptive

Example:

SecActi on nol og, phase: 2, sani ti seArg: password

Note

The sanitize actions do not sanitize any data within the actual raw requests but only on the copy of data
within memory that is set to log to the audit log. It will not sanitize the data in the modsec_debug.log file

58

ModSecurity Reference Manual

(if thelog level is set high enough to capture this data).

sani ti seMvat ched

Description: Sanitises the variable (request argument, request header, or response header) that caused a
rule match.

Action Group: Non-Disruptive

Example: This action can be used to sanitise arbitrary transaction elements when they match a condition.
For example, the example below will sanitise any argument that contains the word password in the name.

SecRul e ARGS_NAMES passwor d nol og, pass, saniti seMat ched

Note
Same note as sanitiseArg.

sani ti seRequest Header

Description: Sanitises a named request header.
Action Group: Non-Disruptive
Example: Thiswill sanitise the datain the Authorization header.

SecActi on | og, phase: 1, sani ti seRequest Header : Aut hori zati on

Note
Same note as sanitiseArg.

sani ti seResponseHeader

Description: Sanitises a named response header.
Action Group: Non-Disruptive
Example: Thiswill sanitise the Set-Cookie data sent to the client.

SecActi on | og, phase: 3, sani ti seResponseHeader : Set - Cooki e

Note
Same note as sanitiseArg.
severity

Description: Assigns severity to theruleit is placed with.
Action Group: Metadata
Example:

SecRul e REQUEST_METHOD "~PUT$" "id: 340002, rev: 1, severity:2, msg: "' Restricted HTTP function'"

59

ModSecurity Reference Manual

Note
The severity numbers follow the Syslog convention:

* 0=EMERGENCY

e 1=ALERT

« 2=CRITICAL

e 3=ERROR

e 4=WARNING

« 5=NOTICE

e 6=INFO

« 7=DEBUG
set ui d

Description: Special-purpose action that initialises the USER collection.
Action Group: Non-Disruptive
Example:

SecAction setui d: %4 REMOTE_USER}, nol og

Note
After initialisation takes place the variable USERI D will be available for use in the subsequent rules.

setsid

Description: Special-purposeaction that initialises the SESSI ON collection.
Action Group: Non-Disruptive

Example:

Initialise session variables using the session cookie val ue
SecRul e REQUEST COOKI ES: PHPSESSI D ! ~$ chai n, nol og, pass
SecActi on set si d: %4 REQUEST_COCKI ES. PHPSESSI D}

Note

On first invocation of this action the collection will be empty (not taking the pre-defined variables into ac-
count - see i ni t col for more information). On subsequent invocations the contents of the collection
(session, in this case) will be retrieved from storage. After initialisation takes place the variable SES-
SI ONI D will be available for use in the subsequent rules. This action understands each application main-
tainsits own set of sessions. It will utilise the current web application ID to create a session hamespace.

set env

Description: Creates, removes, or updates an environment variable.

60

ModSecurity Reference Manual

Action Group: Non-Disruptive
Examples:
To create anew variable (if you omit the value 1 will be used):

set env: nane=val ue

Toremove avariable:

set env: ! nane

Note
This action can be used to establish communication with other Apache modules.

setvar

Description: Creates, removes, or updates a variable in the specified collection.
Action Group: Non-Disruptive

Examples:

To create anew variable:

setvar:tx.score=10
To remove avariable prefix the name with exclamation mark:

setvar:!tx.score

To increase or decrease variable value use + and - charactersin front of anumerical vaue:

setvar:.tx.score=+5

skip

Description: Skips one or more rules (or chains) on successful match.
Action Group: Non-Disruptive

Example:

SecRul e REQUEST_URI "~/ $" "chai n, ski p: 2"
SecRul e REMOTE_ADDR "~127\.0\.0\.1$" "chain"
SecRul e REQUEST HEADERS: User - Agent "“Apache \ (i nternal dummy connection\)$" "t:none"
SecRul e &REQUEST HEADERS: Host " @q 0" \

"deny, | og, st at us: 400, i d: 960008, severity: 4, nsg: ' Request M ssing a Host Header'"
SecRul e &REQUEST_HEADERS: Accept " @q 0" \

"l og, deny, | 0g, st at us: 400, i d: 960015, nsg: ' Request M ssi ng an Accept Header'"

61

ModSecurity Reference Manual

Note

Skip only applies to the current processing phase and not necessarily the order in which the rules appear
in the configuration file. If you group rules by processing phases, then skip should work as expected. This
action can not be used to skip rules within one chain. Accepts a single paramater denoting the number of
rules (or chains) to skip.

st at us

Description: Specifies the response status code to use with actions deny and r edi rect .
Action Group: Disruptive

Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 1

Note

Staus actions defined in Apache scope locations (such as Directory, Location, etc...) may be superceded
by phase:1 action settings. The Apache ErrorDocument directive will be triggered if present in the config-
uration. Therefore if you have previoudy defined a custom error page for a given status then it will be ex-
ecuted and its output presented to the user.

t

Description: This action can be used which transformation function should be used against the specified
variables before they (or the results, rather) are run against the operator specified in the rule.

Action Group: Non-Disruptive
Example:

SecDef aul t Acti on | og, deny, phase: 1,t:renmoveNul | s, t: | owercase
SecRul e REQUEST COCKI ES: SESSI ONI D "47414e81chbef 3cf 8366e84eeacba091" \
| og, deny, st at us: 403, t: nd5

Note

Any transformation functions that you specify in a SecRule will be in addtion to previous ones specified
in SecDefaultAction. Use of "t:none" will remove all transformation functions for the specified rule.

xm ns

Description: This action should be used together with an X Path expression to register a namespace.
Action Group: Non-Disruptive

Example:

SecRul e REQUEST_ HEADERS: Cont ent - Type "text/xm " \

phase: 1, pass, ctl : request BodyPr ocessor=XM., ct | : request BodyAccess=On, xm ns: xsd="ht t p: // wa
SecRul e XM.: / soap: Envel ope/ soap: Body/ ql: getlnput/id() "123" phase: 2, deny

62

ModSecurity Reference Manual

Operators

A number of operators can be used in rules, as documented below. The operator syntax used the "@"
symbol followed by the specific operator name.

€q
Description: This operator is anumerical comparison and stands for "equal to."
Example:

SecRul e &REQUEST HEADERS_NAMES " @q 15"

ge
Description: This operator isanumerical comparison and stands for "greater than or equal to."
Example:

SecRul e &REQUEST_HEADERS_NAMES " @e 15"

gt
Description: This operator isanumerical comparison and stands for "greater than."
Example:

SecRul e &REQUEST_HEADERS_NAMES " @t 15"

| nspectFile
Description: Executes the external script/binary given as parameter to the operator against every file ex-
tracted from the request.

Example:

SecRul e FILES TMPNAMES " @ nspect Fil e /opt/apache/ bi n/i nspect _script.pl"

| e
Description: This operator isanumerical comparison and stands for "less than or equal to."
Example:

SecRul e &REQUEST_HEADERS_NAMES "@e 15"

63

ModSecurity Reference Manual

| t

Description: This operator is anumerical comparison and stands for "less than."
Example:

SecRul e &REQUEST_HEADERS_NAMES "@t 15"

r bl

Description: Look up the parameter in the RBL given as parameter. Parameter can be an 1Pv4 address, or
ahostname.

Example:

SecRul e REMOTE_ADDR "@ bl sc. surbl.org"

X

Description: Regular expression operator. This is the default operator, so if the "@" operator is not
defined, it is assumed to be rx.

Example:
SecRul e REQUEST HEADERS: User - Agent " @ x ni kt 0"

Note
Regular expressions are handled by the PCRE library (http://www.pcre.org). ModSecurity compiles its
regular expressions with the following settings:

1. Theentireinput istreated as asingle line, even when there are newline characters present.

2. All matches are case-sensitive. If you do not care about case sensitivity you either need to im-
plement the | ower case transformational function, or use the per-pattern(?i) modificator, as
allowed by PCRE.

3. The PCRE_DOTALL and PCRE_DOLLAR ENDONLY flags are set during compilation, mean-
ing a single dot will match any character, including the newlines and a $ end anchor will not
match atrailing newline charater.

val i dat eByt eRange

Description: Validates the byte range used in the variable falls into the specified range.
Example:

SecRul e ARG text "@ali dateByteRange 10, 13, 32-126"

Note

http://www.pcre.org

ModSecurity Reference Manual

You can force requests to consist only of bytes from a certain byte range. This can be useful to avoid
stack overflow attacks (since they usually contain "random™ binary content). Default range values are O
and 255, i.e. dl byte values are allowed. This directive does not check byte range in a POST payload
when mul ti part/form dat a encoding (file upload) is used. Doing so would prevent binary files
from being uploaded. However, after the parameters are extracted from such request they are checked for
avalid range.

validateByteRange is similar to the ModSecurity 1.X SecFilterForceByteRange Directive however since
it worksin arule context, it has the following differences:

* You can specify adifferent range for different variables.

e Ithasan"event" context (id, msg....)

» Itisexecuted in the flow of rulesrather than being a built in pre-check.

val i dat eDTD

Description: This operator requires the request body to be processed as XML.
Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST_HEADERS: Cont ent - Type ~text/xm $ \
phase: 1,t: | ower case, nol og, pass, ctl: request BodyProcessor =XM_
SecRul e REQBODY_PROCESSOR "!AXM.$" nol og, pass, skip: 1
SecRul e XML " @al i dat eDTD / pat h/ t o/ apache2/ conf/xm . dt d"

val | dat eSchenn

Description: This operator requires the request body to be processed as XML.
Example:

SecDef aul t Acti on | og, deny, st at us: 403, phase: 2
SecRul e REQUEST_ HEADERS: Cont ent - Type ~text/xm $ \
phase: 1,t: | ower case, nol og, pass, ctl: request BodyProcessor =XM_
SecRul e REQBODY_PROCESSCR "! AXM.$" nol og, pass, skip:1
SecRul e XM_ " @al i dat eSchema / pat h/ t o/ apache2/ conf/xm . xsd"

This operator requires request body to be processed as XML.

val i dat eUr | Encodi ng

Description: Verifies the encodings used in the variable (if any) are valid.
Example:

SecRul e ARGS " @al i dat eUr| Encodi ng"

Note

65

ModSecurity Reference Manual

URL encoding is an HTTP standard for encoding byte values within a URL. The byte is escaped with a %
followed by two hexadecimal values (0-F). This directive does not check encoding in a POST payload
when themul ti part/form dat a encoding (file upload) is used. It is not necessary to do so because
URL encoding is not used for this encoding.

val i dat eUt f 8Encodi ng
Description: Verifiesthe variableisavalid UTF-8 encoded string.
Example:

SecRul e ARGS " @al i dat eUt f 8Encodi ng"

Note

UTF-8 encoding is valid on most web servers. Integer values between 0-65535 are encoded in a UTF-8
byte sequence that is escaped by percents. The short form istwo bytesin length.

check for three types of errors:

* Not enough bytes. UTF-8 supports two, three, four, five, and six byte encodings. ModSecurity
will locate cases when a byte or more is missing.

» Invalid encoding. The two most significant bits in most characters are supposed to be fixed to
0x80. Attackers can use this to subvert Unicode decoders.

» Overlong characters. ASCII characters are mapped directly into the Unicode space and are thus
represented with a single byte. However, most ASCII characters can also be encoded with two,
three, four, five, and six characters thus tricking the decoder into thinking that the character is
something else (and, presumably, avoiding the security check).

66

ModSecurity Reference Manual

Miscellaneous Topics

Impedance Mismatch

Web application firewalls have a difficult job trying to make sense of data that passes by, without any
knowledge of the application and its business logic. The protection they provide comes from having an
independent layer of security on the outside. Because data validation is done twice, security can be in-
creased without having to touch the application. In some cases, however, the fact that everything is done
twice brings problems. Problems can arise in the areas where the communication protocols are not well
specified, or where either the device or the application do things that are not in the specification. In such
cases it may be possible to design payload that will be interpreted in one way by one device and in anoth-
er by the other device. This problem is better known as Impedance Mismatch. It can be exploited to evade
the security devices.

While we will continue to enhance ModSecurity to deal with various evasion techniques the problem can
only be minimized, but never solved. With so many different application backends chances are some will
always do something completely unexpected. The only solution is to be aware of the technologies in the
backend when writing rules, adapting the rules to remove the mismatch. See the next section for some ex-
amples.

PHP Peculiarities for ModSecurity Users
When writing rules to protect PHP applications you need to pay attention to the following facts:

1. When "register_globals' is set to "On" request parameters are automatically converted to script
variables. In some PHP versionsit is even possible to override the $SGLOBALS array.

2. Whitespace at the beginning of parameter names is ignored. (This is very dangerous if you are
writing rules to target specific named variables.)

3. Theremaining whitespace (in parameter names) is converted to underscores. The same applies
to dotsand to a"[" if the variable name does not contain a matching closing bracket. (Meaning
that if you want to exploit a script through a variable that contains an underscore in the name
you can send a parameter with awhitespace or adot instead.)

4. Cookies can betreated as request parameters.

5. Thediscussion about variable names applies equally to the cookie names.

6. The order in which parameters are taken from the request and the environment is EGPCS
(environment, GET, POST, Cookies, built-in variables). This means that a POST parameter
will overwrite the parameters transported on the request line (in QUERY _STRING).

7. When "magic_quotes gpc" is set to "On" PHP will use backslash to escape the following char-
acters: single quote, double quote, backslash, and the nul byte.

8. If "magic_quotes sybase" is set to "On" only the single quote will be escaped using another
single quote. In this case the "magic_quotes gpc" setting becomes irrelevant. The "ma-
gic_quotes sybase" setting completely overrides the "magic_quotes gpc" behaviour but "ma-

67

ModSecurity Reference Manual

gic_quotes gpc" still must be set to "On" for the Sybase-specific quoting to be work.

9. PHP will aso automatically create nested arrays for you. For example "p[x][y]=1" resultsin a
total of three variables.

68

	ModSecurity Reference Manual
	Table of Contents
	Introduction
	HTTP Traffic Logging
	Real-Time Monitoring and Attack Detection
	Attack Prevention and Just-in-time Patching
	Flexible Rule Engine
	Embedded-mode Deployment
	Network-based Deployment
	Licensing

	ModSecurity Core Rules
	Overview
	Core Rules Structure
	Core Rules Content

	Installation
	Configuration Directives
	SecAction
	SecArgumentSeparator
	SecAuditEngine
	SecAuditLog
	SecAuditLog2
	SecAuditLogParts
	SecAuditLogRelevantStatus
	SecAuditLogStorageDir
	SecAuditLogType
	SecChrootDir
	SecCookieFormat
	SecDataDir
	SecDebugLog
	SecDebugLogLevel
	SecDefaultAction
	SecGuardianLog
	SecRequestBodyAccess
	SecRequestBodyLimit
	SecRequestBodyInMemoryLimit
	SecResponseBodyLimit
	SecResponseBodyMimeType
	SecResponseBodyMimeTypesClear
	SecResponseBodyAccess
	SecRule
	Variables in rules
	Operators in rules
	Actions in rules

	SecRuleInheritance
	SecRuleEngine
	SecRuleRemoveById
	SecRuleRemoveByMsg
	SecServerSignature
	SecTmpDir
	SecUploadDir
	SecUploadKeepFiles
	SecWebAppId

	Processing Phases
	Phase Request Headers
	Phase Request Body
	Phase Response Headers
	Phase Response Body
	Phase Logging

	Variables
	ARGS
	ARGS_COMBINED_SIZE
	ARGS_NAMES
	AUTH_TYPE
	ENV
	FILES
	FILES_COMBINED_SIZE
	FILES_NAMES
	FILES_SIZES
	FILES_TMPNAMES
	HTTP_
	MULTIPART_CRLF_LF_LINES
	MULTIPART_STRICT_ERROR
	MULTIPART_UNMATCHED_BOUNDARY
	PATH_INFO
	QUERY_STRING
	REMOTE_ADDR
	REMOTE_HOST
	REMOTE_PORT
	REMOTE_USER
	REQBODY_PROCESSOR
	REQBODY_PROCESSOR_ERROR
	REQBODY_PROCESSOR_ERROR_MSG
	REQUEST_BASENAME
	REQUEST_BODY
	REQUEST_COOKIES
	REQUEST_COOKIES_NAMES
	REQUEST_FILENAME
	REQUEST_HEADERS
	REQUEST_HEADERS_NAMES
	REQUEST_LINE
	REQUEST_METHOD
	REQUEST_PROTOCOL
	REQUEST_URI
	REQUEST_URI_RAW
	RESPONSE_BODY
	RESPONSE_HEADERS
	RESPONSE_HEADERS_NAMES
	RESPONSE_PROTOCOL
	RESPONSE_STATUS
	RULE
	SCRIPT_BASENAME
	SCRIPT_FILENAME
	SCRIPT_GID
	SCRIPT_GROUPNAME
	SCRIPT_MODE
	SCRIPT_UID
	SCRIPT_USERNAME
	SERVER_ADDR
	SERVER_NAME
	SERVER_PORT
	SESSION
	SESSIONID
	TIME
	TIME_DAY
	TIME_EPOCH
	TIME_HOUR
	TIME_MIN
	TIME_MON
	TIME_SEC
	TIME_WDAY
	TIME_YEAR
	TX
	USERID
	WEBAPPID
	WEBSERVER_ERROR_LOG
	XML

	Transformation functions
	base64Decode
	base64Encode
	compressWhitespace
	escapeSeqDecode
	hexDecode
	hexEncode
	htmlEntityDecode
	lowercase
	md5
	none
	normalisePath
	normalisePathWin
	removeNulls
	removeWhitespace
	replaceComments
	replaceNulls
	urlDecode
	urlDecodeUni
	urlEncode
	sha1

	Actions
	allow
	auditlog
	capture
	chain
	ctl
	deny
	deprecatevar
	drop
	exec
	expirevar
	id
	initcol
	log
	msg
	multiMatch
	noauditlog
	nolog
	pass
	pause
	phase
	proxy
	redirect
	rev
	sanitiseArg
	sanitiseMatched
	sanitiseRequestHeader
	sanitiseResponseHeader
	severity
	setuid
	setsid
	setenv
	setvar
	skip
	status
	t
	xmlns

	Operators
	eq
	ge
	gt
	inspectFile
	le
	lt
	rbl
	rx
	validateByteRange
	validateDTD
	validateSchema
	validateUrlEncoding
	validateUtf8Encoding

	Miscellaneous Topics
	Impedance Mismatch
	PHP Peculiarities for ModSecurity Users

