/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fdqueue.h" #include "apr_atomic.h" typedef struct recycled_pool { apr_pool_t *pool; struct recycled_pool *next; } recycled_pool; struct fd_queue_info_t { apr_uint32_t idlers; apr_thread_mutex_t *idlers_mutex; apr_thread_cond_t *wait_for_idler; int terminated; int max_idlers; recycled_pool *recycled_pools; }; static apr_status_t queue_info_cleanup(void *data_) { fd_queue_info_t *qi = data_; apr_thread_cond_destroy(qi->wait_for_idler); apr_thread_mutex_destroy(qi->idlers_mutex); /* Clean up any pools in the recycled list */ for (;;) { struct recycled_pool *first_pool = qi->recycled_pools; if (first_pool == NULL) { break; } if (apr_atomic_casptr((volatile void**)&(qi->recycled_pools), first_pool->next, first_pool) == first_pool) { apr_pool_destroy(first_pool->pool); } } return APR_SUCCESS; } apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info, apr_pool_t *pool, int max_idlers) { apr_status_t rv; fd_queue_info_t *qi; qi = apr_palloc(pool, sizeof(*qi)); memset(qi, 0, sizeof(*qi)); rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT, pool); if (rv != APR_SUCCESS) { return rv; } rv = apr_thread_cond_create(&qi->wait_for_idler, pool); if (rv != APR_SUCCESS) { return rv; } qi->recycled_pools = NULL; qi->max_idlers = max_idlers; apr_pool_cleanup_register(pool, qi, queue_info_cleanup, apr_pool_cleanup_null); *queue_info = qi; return APR_SUCCESS; } apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info, apr_pool_t *pool_to_recycle) { apr_status_t rv; int prev_idlers; /* If we have been given a pool to recycle, atomically link * it into the queue_info's list of recycled pools */ if (pool_to_recycle) { struct recycled_pool *new_recycle; new_recycle = (struct recycled_pool *)apr_palloc(pool_to_recycle, sizeof(*new_recycle)); new_recycle->pool = pool_to_recycle; for (;;) { new_recycle->next = queue_info->recycled_pools; if (apr_atomic_casptr((volatile void**)&(queue_info->recycled_pools), new_recycle, new_recycle->next) == new_recycle->next) { break; } } } /* Atomically increment the count of idle workers */ for (;;) { prev_idlers = queue_info->idlers; if (apr_atomic_cas32(&(queue_info->idlers), prev_idlers + 1, prev_idlers) == prev_idlers) { break; } } /* If this thread just made the idle worker count nonzero, * wake up the listener. */ if (prev_idlers == 0) { rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } rv = apr_thread_cond_signal(queue_info->wait_for_idler); if (rv != APR_SUCCESS) { apr_thread_mutex_unlock(queue_info->idlers_mutex); return rv; } rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } } return APR_SUCCESS; } apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info, apr_pool_t **recycled_pool) { apr_status_t rv; *recycled_pool = NULL; /* Block if the count of idle workers is zero */ if (queue_info->idlers == 0) { rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } /* Re-check the idle worker count to guard against a * race condition. Now that we're in the mutex-protected * region, one of two things may have happened: * - If the idle worker count is still zero, the * workers are all still busy, so it's safe to * block on a condition variable. * - If the idle worker count is nonzero, then a * worker has become idle since the first check * of queue_info->idlers above. It's possible * that the worker has also signaled the condition * variable--and if so, the listener missed it * because it wasn't yet blocked on the condition * variable. But if the idle worker count is * now nonzero, it's safe for this function to * return immediately. */ if (queue_info->idlers == 0) { rv = apr_thread_cond_wait(queue_info->wait_for_idler, queue_info->idlers_mutex); if (rv != APR_SUCCESS) { apr_status_t rv2; rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv2 != APR_SUCCESS) { return rv2; } return rv; } } rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } } /* Atomically decrement the idle worker count */ apr_atomic_dec32(&(queue_info->idlers)); /* Atomically pop a pool from the recycled list */ for (;;) { struct recycled_pool *first_pool = queue_info->recycled_pools; if (first_pool == NULL) { break; } if (apr_atomic_casptr((volatile void**)&(queue_info->recycled_pools), first_pool->next, first_pool) == first_pool) { *recycled_pool = first_pool->pool; break; } } if (queue_info->terminated) { return APR_EOF; } else { return APR_SUCCESS; } } apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info) { apr_status_t rv; rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } queue_info->terminated = 1; apr_thread_cond_broadcast(queue_info->wait_for_idler); return apr_thread_mutex_unlock(queue_info->idlers_mutex); } /** * Detects when the fd_queue_t is full. This utility function is expected * to be called from within critical sections, and is not threadsafe. */ #define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds) /** * Detects when the fd_queue_t is empty. This utility function is expected * to be called from within critical sections, and is not threadsafe. */ #define ap_queue_empty(queue) ((queue)->nelts == 0) /** * Callback routine that is called to destroy this * fd_queue_t when its pool is destroyed. */ static apr_status_t ap_queue_destroy(void *data) { fd_queue_t *queue = data; /* Ignore errors here, we can't do anything about them anyway. * XXX: We should at least try to signal an error here, it is * indicative of a programmer error. -aaron */ apr_thread_cond_destroy(queue->not_empty); apr_thread_mutex_destroy(queue->one_big_mutex); return APR_SUCCESS; } /** * Initialize the fd_queue_t. */ apr_status_t ap_queue_init(fd_queue_t *queue, int queue_capacity, apr_pool_t *a) { int i; apr_status_t rv; if ((rv = apr_thread_mutex_create(&queue->one_big_mutex, APR_THREAD_MUTEX_DEFAULT, a)) != APR_SUCCESS) { return rv; } if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) { return rv; } queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t)); queue->bounds = queue_capacity; queue->nelts = 0; /* Set all the sockets in the queue to NULL */ for (i = 0; i < queue_capacity; ++i) queue->data[i].sd = NULL; apr_pool_cleanup_register(a, queue, ap_queue_destroy, apr_pool_cleanup_null); return APR_SUCCESS; } /** * Push a new socket onto the queue. * * precondition: ap_queue_info_wait_for_idler has already been called * to reserve an idle worker thread */ apr_status_t ap_queue_push(fd_queue_t *queue, apr_socket_t *sd, apr_pool_t *p) { fd_queue_elem_t *elem; apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } AP_DEBUG_ASSERT(!queue->terminated); AP_DEBUG_ASSERT(!ap_queue_full(queue)); elem = &queue->data[queue->nelts]; elem->sd = sd; elem->p = p; queue->nelts++; apr_thread_cond_signal(queue->not_empty); if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return APR_SUCCESS; } /** * Retrieves the next available socket from the queue. If there are no * sockets available, it will block until one becomes available. * Once retrieved, the socket is placed into the address specified by * 'sd'. */ apr_status_t ap_queue_pop(fd_queue_t *queue, apr_socket_t **sd, apr_pool_t **p) { fd_queue_elem_t *elem; apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } /* Keep waiting until we wake up and find that the queue is not empty. */ if (ap_queue_empty(queue)) { if (!queue->terminated) { apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex); } /* If we wake up and it's still empty, then we were interrupted */ if (ap_queue_empty(queue)) { rv = apr_thread_mutex_unlock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } else { return APR_EINTR; } } } elem = &queue->data[--queue->nelts]; *sd = elem->sd; *p = elem->p; #ifdef AP_DEBUG elem->sd = NULL; elem->p = NULL; #endif /* AP_DEBUG */ rv = apr_thread_mutex_unlock(queue->one_big_mutex); return rv; } apr_status_t ap_queue_interrupt_all(fd_queue_t *queue) { apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } apr_thread_cond_broadcast(queue->not_empty); return apr_thread_mutex_unlock(queue->one_big_mutex); } apr_status_t ap_queue_term(fd_queue_t *queue) { apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } /* we must hold one_big_mutex when setting this... otherwise, * we could end up setting it and waking everybody up just after a * would-be popper checks it but right before they block */ queue->terminated = 1; if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return ap_queue_interrupt_all(queue); }