/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define APR_WANT_STRFUNC #include "apr_want.h" #include "apr_lib.h" #include "apr_hash.h" #include "apr_strings.h" #include "httpd.h" #include "http_log.h" #include "util_filter.h" /* NOTE: Apache's current design doesn't allow a pool to be passed thru, so we depend on a global to hold the correct pool */ #define FILTER_POOL apr_hook_global_pool #include "apr_hooks.h" /* for apr_hook_global_pool */ /* ** This macro returns true/false if a given filter should be inserted BEFORE ** another filter. This will happen when one of: 1) there isn't another ** filter; 2) that filter has a higher filter type (class); 3) that filter ** corresponds to a different request. */ #define INSERT_BEFORE(f, before_this) ((before_this) == NULL \ || (before_this)->frec->ftype > (f)->frec->ftype \ || (before_this)->r != (f)->r) /* Trie structure to hold the mapping from registered * filter names to filters */ typedef struct filter_trie_node filter_trie_node; typedef struct { int c; filter_trie_node *child; } filter_trie_child_ptr; /* Each trie node has an array of pointers to its children. * The array is kept in sorted order so that add_any_filter() * can do a binary search */ struct filter_trie_node { ap_filter_rec_t *frec; filter_trie_child_ptr *children; int nchildren; int size; }; #define TRIE_INITIAL_SIZE 4 /* Link a trie node to its parent */ static void trie_node_link(apr_pool_t *p, filter_trie_node *parent, filter_trie_node *child, int c) { int i, j; if (parent->nchildren == parent->size) { filter_trie_child_ptr *new; parent->size *= 2; new = (filter_trie_child_ptr *)apr_palloc(p, parent->size * sizeof(filter_trie_child_ptr)); memcpy(new, parent->children, parent->nchildren * sizeof(filter_trie_child_ptr)); parent->children = new; } for (i = 0; i < parent->nchildren; i++) { if (c == parent->children[i].c) { return; } else if (c < parent->children[i].c) { break; } } for (j = parent->nchildren; j > i; j--) { parent->children[j].c = parent->children[j - 1].c; parent->children[j].child = parent->children[j - 1].child; } parent->children[i].c = c; parent->children[i].child = child; parent->nchildren++; } /* Allocate a new node for a trie. * If parent is non-NULL, link the new node under the parent node with * key 'c' (or, if an existing child node matches, return that one) */ static filter_trie_node *trie_node_alloc(apr_pool_t *p, filter_trie_node *parent, char c) { filter_trie_node *new_node; if (parent) { int i; for (i = 0; i < parent->nchildren; i++) { if (c == parent->children[i].c) { return parent->children[i].child; } else if (c < parent->children[i].c) { break; } } new_node = (filter_trie_node *)apr_palloc(p, sizeof(filter_trie_node)); trie_node_link(p, parent, new_node, c); } else { /* No parent node */ new_node = (filter_trie_node *)apr_palloc(p, sizeof(filter_trie_node)); } new_node->frec = NULL; new_node->nchildren = 0; new_node->size = TRIE_INITIAL_SIZE; new_node->children = (filter_trie_child_ptr *)apr_palloc(p, new_node->size * sizeof(filter_trie_child_ptr)); return new_node; } static filter_trie_node *registered_output_filters = NULL; static filter_trie_node *registered_input_filters = NULL; static apr_status_t filter_cleanup(void *ctx) { registered_output_filters = NULL; registered_input_filters = NULL; return APR_SUCCESS; } static ap_filter_rec_t *get_filter_handle(const char *name, const filter_trie_node *filter_set) { if (filter_set) { const char *n; const filter_trie_node *node; node = filter_set; for (n = name; *n; n++) { int start, end; start = 0; end = node->nchildren - 1; while (end >= start) { int middle = (end + start) / 2; char ch = node->children[middle].c; if (*n == ch) { node = node->children[middle].child; break; } else if (*n < ch) { end = middle - 1; } else { start = middle + 1; } } if (end < start) { node = NULL; break; } } if (node && node->frec) { return node->frec; } } return NULL; } AP_DECLARE(ap_filter_rec_t *)ap_get_output_filter_handle(const char *name) { return get_filter_handle(name, registered_output_filters); } AP_DECLARE(ap_filter_rec_t *)ap_get_input_filter_handle(const char *name) { return get_filter_handle(name, registered_input_filters); } static ap_filter_rec_t *register_filter(const char *name, ap_filter_func filter_func, ap_init_filter_func filter_init, ap_filter_type ftype, filter_trie_node **reg_filter_set) { ap_filter_rec_t *frec; char *normalized_name; const char *n; filter_trie_node *node; if (!*reg_filter_set) { *reg_filter_set = trie_node_alloc(FILTER_POOL, NULL, 0); } normalized_name = apr_pstrdup(FILTER_POOL, name); ap_str_tolower(normalized_name); node = *reg_filter_set; for (n = normalized_name; *n; n++) { filter_trie_node *child = trie_node_alloc(FILTER_POOL, node, *n); if (apr_isalpha(*n)) { trie_node_link(FILTER_POOL, node, child, apr_toupper(*n)); } node = child; } if (node->frec) { frec = node->frec; } else { frec = apr_pcalloc(FILTER_POOL, sizeof(*frec)); node->frec = frec; frec->name = normalized_name; } frec->filter_func = filter_func; frec->filter_init_func = filter_init; frec->ftype = ftype; apr_pool_cleanup_register(FILTER_POOL, NULL, filter_cleanup, apr_pool_cleanup_null); return frec; } AP_DECLARE(ap_filter_rec_t *) ap_register_input_filter(const char *name, ap_in_filter_func filter_func, ap_init_filter_func filter_init, ap_filter_type ftype) { ap_filter_func f; f.in_func = filter_func; return register_filter(name, f, filter_init, ftype, ®istered_input_filters); } AP_DECLARE(ap_filter_rec_t *) ap_register_output_filter(const char *name, ap_out_filter_func filter_func, ap_init_filter_func filter_init, ap_filter_type ftype) { return ap_register_output_filter_protocol(name, filter_func, filter_init, ftype, 0); } AP_DECLARE(ap_filter_rec_t *) ap_register_output_filter_protocol( const char *name, ap_out_filter_func filter_func, ap_init_filter_func filter_init, ap_filter_type ftype, unsigned int proto_flags) { ap_filter_rec_t* ret ; ap_filter_func f; f.out_func = filter_func; ret = register_filter(name, f, filter_init, ftype, ®istered_output_filters); ret->proto_flags = proto_flags ; return ret ; } static ap_filter_t *add_any_filter_handle(ap_filter_rec_t *frec, void *ctx, request_rec *r, conn_rec *c, ap_filter_t **r_filters, ap_filter_t **p_filters, ap_filter_t **c_filters) { apr_pool_t* p = r ? r->pool : c->pool; ap_filter_t *f = apr_palloc(p, sizeof(*f)); ap_filter_t **outf; if (frec->ftype < AP_FTYPE_PROTOCOL) { if (r) { outf = r_filters; } else { ap_log_error(APLOG_MARK, APLOG_ERR, 0, NULL, "a content filter was added without a request: %s", frec->name); return NULL; } } else if (frec->ftype < AP_FTYPE_CONNECTION) { if (r) { outf = p_filters; } else { ap_log_error(APLOG_MARK, APLOG_ERR, 0, NULL, "a protocol filter was added without a request: %s", frec->name); return NULL; } } else { outf = c_filters; } f->frec = frec; f->ctx = ctx; f->r = r; f->c = c; f->next = NULL; if (INSERT_BEFORE(f, *outf)) { f->next = *outf; if (*outf) { ap_filter_t *first = NULL; if (r) { /* If we are adding our first non-connection filter, * Then don't try to find the right location, it is * automatically first. */ if (*r_filters != *c_filters) { first = *r_filters; while (first && (first->next != (*outf))) { first = first->next; } } } if (first && first != (*outf)) { first->next = f; } } *outf = f; } else { ap_filter_t *fscan = *outf; while (!INSERT_BEFORE(f, fscan->next)) fscan = fscan->next; f->next = fscan->next; fscan->next = f; } if (frec->ftype < AP_FTYPE_CONNECTION && (*r_filters == *c_filters)) { *r_filters = *p_filters; } return f; } static ap_filter_t *add_any_filter(const char *name, void *ctx, request_rec *r, conn_rec *c, const filter_trie_node *reg_filter_set, ap_filter_t **r_filters, ap_filter_t **p_filters, ap_filter_t **c_filters) { if (reg_filter_set) { const char *n; const filter_trie_node *node; node = reg_filter_set; for (n = name; *n; n++) { int start, end; start = 0; end = node->nchildren - 1; while (end >= start) { int middle = (end + start) / 2; char ch = node->children[middle].c; if (*n == ch) { node = node->children[middle].child; break; } else if (*n < ch) { end = middle - 1; } else { start = middle + 1; } } if (end < start) { node = NULL; break; } } if (node && node->frec) { return add_any_filter_handle(node->frec, ctx, r, c, r_filters, p_filters, c_filters); } } ap_log_error(APLOG_MARK, APLOG_ERR, 0, NULL, "an unknown filter was not added: %s", name); return NULL; } AP_DECLARE(ap_filter_t *) ap_add_input_filter(const char *name, void *ctx, request_rec *r, conn_rec *c) { return add_any_filter(name, ctx, r, c, registered_input_filters, r ? &r->input_filters : NULL, r ? &r->proto_input_filters : NULL, &c->input_filters); } AP_DECLARE(ap_filter_t *) ap_add_input_filter_handle(ap_filter_rec_t *f, void *ctx, request_rec *r, conn_rec *c) { return add_any_filter_handle(f, ctx, r, c, r ? &r->input_filters : NULL, r ? &r->proto_input_filters : NULL, &c->input_filters); } AP_DECLARE(ap_filter_t *) ap_add_output_filter(const char *name, void *ctx, request_rec *r, conn_rec *c) { return add_any_filter(name, ctx, r, c, registered_output_filters, r ? &r->output_filters : NULL, r ? &r->proto_output_filters : NULL, &c->output_filters); } AP_DECLARE(ap_filter_t *) ap_add_output_filter_handle(ap_filter_rec_t *f, void *ctx, request_rec *r, conn_rec *c) { return add_any_filter_handle(f, ctx, r, c, r ? &r->output_filters : NULL, r ? &r->proto_output_filters : NULL, &c->output_filters); } static void remove_any_filter(ap_filter_t *f, ap_filter_t **r_filt, ap_filter_t **p_filt, ap_filter_t **c_filt) { ap_filter_t **curr = r_filt ? r_filt : c_filt; ap_filter_t *fscan = *curr; if (p_filt && *p_filt == f) *p_filt = (*p_filt)->next; if (*curr == f) { *curr = (*curr)->next; return; } while (fscan->next != f) { if (!(fscan = fscan->next)) { return; } } fscan->next = f->next; } AP_DECLARE(void) ap_remove_input_filter(ap_filter_t *f) { remove_any_filter(f, f->r ? &f->r->input_filters : NULL, f->r ? &f->r->proto_input_filters : NULL, &f->c->input_filters); } AP_DECLARE(void) ap_remove_output_filter(ap_filter_t *f) { remove_any_filter(f, f->r ? &f->r->output_filters : NULL, f->r ? &f->r->proto_output_filters : NULL, &f->c->output_filters); } /* * Read data from the next filter in the filter stack. Data should be * modified in the bucket brigade that is passed in. The core allocates the * bucket brigade, modules that wish to replace large chunks of data or to * save data off to the side should probably create their own temporary * brigade especially for that use. */ AP_DECLARE(apr_status_t) ap_get_brigade(ap_filter_t *next, apr_bucket_brigade *bb, ap_input_mode_t mode, apr_read_type_e block, apr_off_t readbytes) { if (next) { return next->frec->filter_func.in_func(next, bb, mode, block, readbytes); } return AP_NOBODY_READ; } /* Pass the buckets to the next filter in the filter stack. If the * current filter is a handler, we should get NULL passed in instead of * the current filter. At that point, we can just call the first filter in * the stack, or r->output_filters. */ AP_DECLARE(apr_status_t) ap_pass_brigade(ap_filter_t *next, apr_bucket_brigade *bb) { if (next) { apr_bucket *e; if ((e = APR_BRIGADE_LAST(bb)) && APR_BUCKET_IS_EOS(e) && next->r) { /* This is only safe because HTTP_HEADER filter is always in * the filter stack. This ensures that there is ALWAYS a * request-based filter that we can attach this to. If the * HTTP_FILTER is removed, and another filter is not put in its * place, then handlers like mod_cgi, which attach their own * EOS bucket to the brigade will be broken, because we will * get two EOS buckets on the same request. */ next->r->eos_sent = 1; /* remember the eos for internal redirects, too */ if (next->r->prev) { request_rec *prev = next->r->prev; while (prev) { prev->eos_sent = 1; prev = prev->prev; } } } return next->frec->filter_func.out_func(next, bb); } return AP_NOBODY_WROTE; } AP_DECLARE(apr_status_t) ap_save_brigade(ap_filter_t *f, apr_bucket_brigade **saveto, apr_bucket_brigade **b, apr_pool_t *p) { apr_bucket *e; apr_status_t rv, srv = APR_SUCCESS; /* If have never stored any data in the filter, then we had better * create an empty bucket brigade so that we can concat. */ if (!(*saveto)) { *saveto = apr_brigade_create(p, f->c->bucket_alloc); } for (e = APR_BRIGADE_FIRST(*b); e != APR_BRIGADE_SENTINEL(*b); e = APR_BUCKET_NEXT(e)) { rv = apr_bucket_setaside(e, p); /* If the bucket type does not implement setaside, then * (hopefully) morph it into a bucket type which does, and set * *that* aside... */ if (rv == APR_ENOTIMPL) { const char *s; apr_size_t n; rv = apr_bucket_read(e, &s, &n, APR_BLOCK_READ); if (rv == APR_SUCCESS) { rv = apr_bucket_setaside(e, p); } } if (rv != APR_SUCCESS) { srv = rv; /* Return an error but still save the brigade if * ->setaside() is really not implemented. */ if (rv != APR_ENOTIMPL) { return rv; } } } APR_BRIGADE_CONCAT(*saveto, *b); return srv; } AP_DECLARE_NONSTD(apr_status_t) ap_filter_flush(apr_bucket_brigade *bb, void *ctx) { ap_filter_t *f = ctx; return ap_pass_brigade(f, bb); } AP_DECLARE(apr_status_t) ap_fflush(ap_filter_t *f, apr_bucket_brigade *bb) { apr_bucket *b; b = apr_bucket_flush_create(f->c->bucket_alloc); APR_BRIGADE_INSERT_TAIL(bb, b); return ap_pass_brigade(f, bb); } AP_DECLARE_NONSTD(apr_status_t) ap_fputstrs(ap_filter_t *f, apr_bucket_brigade *bb, ...) { va_list args; apr_status_t rv; va_start(args, bb); rv = apr_brigade_vputstrs(bb, ap_filter_flush, f, args); va_end(args); return rv; } AP_DECLARE_NONSTD(apr_status_t) ap_fprintf(ap_filter_t *f, apr_bucket_brigade *bb, const char *fmt, ...) { va_list args; apr_status_t rv; va_start(args, fmt); rv = apr_brigade_vprintf(bb, ap_filter_flush, f, fmt, args); va_end(args); return rv; } AP_DECLARE(void) ap_filter_protocol(ap_filter_t *f, unsigned int flags) { f->frec->proto_flags = flags ; }