
ModSecurity 2
Rule Language

ModSecurity 2 Rule Language 2 / 30

Processing Phases

 ModSecurity splits processing into 5 processing
phases:
1. Request Headers
2. Request Body
3. Response Headers
4. Response Body
5. Logging

 This many phases allow you to decide what you
want to happen at key points of transaction
processing.

ModSecurity 2 Rule Language 3 / 30

Rule Syntax

 The most used directive is SecRule:
SecRule VARIABLES OPERATOR [ACTIONS]
 This directive will:

1. Expand collection variables from the VARIABLES
section.

2. Apply the operator as specified in the OPERATOR
section to the expanded variables.

3. One rule will trigger once for a match in every
variable.

4. A match will either execute the per-rule actions, or
perform the default actions.

ModSecurity 2 Rule Language 4 / 30

Simple Rule

In the simplest case:
SecRule REQUEST_URI aaa
The above will look for the pattern aaa in the

variable REQUEST_URI.
The pattern is a regular expression.
A similar pattern can be written as:
SecRule REQUEST_URI b{3}
ModSecurity uses PCRE (http://www.pcre.org)

http://www.pcre.org/

ModSecurity 2 Rule Language 5 / 30

Multiple Variables As Targets

There can be any number of variables in the
VARIABLES section (separated by pipes):

SecRule "REQUEST_URI|QUERY_STRING" \
ccc
Configuration directives can be split over several

lines (that’s an Apache feature) by terminating
the line with a backslash.

The whitespace at the beginning of next line will
become part of the directive.

If you need to have a whitespace use double
quotes to delimit parameter.

ModSecurity 2 Rule Language 6 / 30

Variable Collections

Some variables expand at runtime:
SecRule ARGS ddd
The above will expand into variables

representing individual request parameters, but
only if there are parameters present.

Only the content is examined.
Another variable is used for the names:
SecRule ARGS_NAMES eee
There is a variable for every bit of transaction.

ModSecurity 2 Rule Language 7 / 30

Targeting Individual Parameters

You can target individual parameters with the
help of the selection operator:

SecRule ARGS:p fff
Or you can target all parameters except the

ones you specify:
SecRule ARGS|!ARGS:q ggg
You can even use a regular expression to select

the parameters (* does the opposite in beta-3):
SecRule ARGS:/^z/ hhh

ModSecurity 2 Rule Language 8 / 30

Counting Variables In a Collection

You can count how many variables there are in
a collection (e.g. parameters, request headers,
response headers, etc):

SecRule &ARGS !^0$
The above triggers if there are any parameters

supplied in the request.
You might have noticed the exclamation mark; it

 negates the regular expression.

ModSecurity 2 Rule Language 9 / 30

Variable Names (1)

ARGS, ARGS_COMBINED_SIZE, ARGS_NAMES
REQBODY_PROCESSOR,

REQBODY_PROCESSOR_ERROR,
REQBODY_PROCESSOR_ERROR_MSG

XML
WEBSERVER_ERROR_LOG
FILES, FILES_TMPNAMES, FILES_NAMES,

FILE_SIZES, FILES_COMBINED_SIZE
TX
ENV

ModSecurity 2 Rule Language 10 / 30

Variable Names (2)

REMOTE_HOST, REMOTE_ADDR,
REMOTE_PORT, REMOTE_USER

PATH_INFO, QUERY_STRING
AUTH_TYPE
SERVER_NAME, SERVER_PORT, SERVER_ADDR
REQUEST_LINE, REQUEST_URI,

REQUEST_METHOD, REQUEST_PROTOCOL
REQUEST_FILENAME, REQUEST_BASENAME
SCRIPT_FILENAME, SCRIPT_BASENAME

ModSecurity 2 Rule Language 11 / 30

Variable Names (3)

TIME, TIME_EPOCH
TIME_YEAR, TIME_MON, TIME_DAY,

TIME_HOUR, TIME_MIN, TIME_SEC,
TIME_WDAY

SCRIPT_UID, SCRIPT_GID
SCRIPT_USERNAME, SCRIPT_GROUPNAME
SCRIPT_MODE
REQUEST_HEADERS,

REQUEST_HEADERS_NAMES

ModSecurity 2 Rule Language 12 / 30

Variable Names (4)

REQUEST_COOKIES,
REQUEST_COOKIES_NAMES

REQUEST_BODY
RESPONSE_LINE, RESPONSE_STATUS
RESPONSE_PROTOCOL
RESPONSE_HEADERS,

RESPONSE_HEADERS_NAMES
RESPONSE_BODY
WEBAPPID, SESSIONID

ModSecurity 2 Rule Language 13 / 30

Explicit Operators In Rules

Regular expression matcher is the default
operator.

In a general case you can choose exactly which
operator you want to use:

SecRule REQUEST_URI "@rx iii"
You can still use the exclamation mark in front

of the @ character (and the meaning is the
same).

ModSecurity 2 Rule Language 14 / 30

Supported Operators

The following operators are supported in 2.0.0-beta-3:

eq

ge

gt

inspectFile

le

lt

rbl

rx

validateByteRange

validateDTD

validateSchema

validateUrlEncoding

validateUtf8Encoding

ModSecurity 2 Rule Language 15 / 30

Operator Usage Examples

Validate files that are uploaded:
SecRule FILES_TMPNAMES "@inspectFile \
/opt/apache/bin/inspect_script.pl"
Check only certain bytes are used in parameters:
SecRule ARGS "@validateByteRange \
10,13,32-126"
Validate UTF-8 encoding:
SecRule ARGS "@validateUtf8Encoding"
Real-time Block List lookup:
SecRule REMOTE_ADDR "@rbl sc.surbl.org"

ModSecurity 2 Rule Language 16 / 30

Actions

 There are five types of action:
1. Disruptive actions – interrupt current transaction.
2. Non-disruptive actions – change state.
3. Flow actions – change rule flow.
4. Meta-data actions – contain rule metadata.
5. Data actions – mere placeholders for other

actions.
 Usage example:
SecRule ARGS ddd log,deny,status:500
SecAction nolog,pass,exec:/bin/this/that.pl

ModSecurity 2 Rule Language 17 / 30

Disruptive Actions

Interrupt or disrupt transaction:
deny – stops transaction.
drop – drops connection
redirect – respond with a redirection.
proxy – forward request to another server.
pause – slow down execution.

ModSecurity 2 Rule Language 18 / 30

Meta-data Actions

Meta-data actions describe the rule:
id – unique rule ID.
rev – rule revision.
msg – custom message.
severity – as syslog (0-7).
phase – the phase where the rule is supposed to

run.
log, nolog – whether or not to log the match.
auditlog, noauditlog – whether or not to count the

match toward audit logging.

ModSecurity 2 Rule Language 19 / 30

Flow Actions

Flow actions affect how rules are processed:
allow – stop processing rules.
chain – combine the rule with the next one.
pass – ignore match in the current rule.
skip – skip over one or more rules.

ModSecurity 2 Rule Language 20 / 30

Data Actions

Data actions are helpers for other parts of the
rule:
capture – used in combination with @rx to capture

subexpressions.
status – which status code to use for deny, redirect.
t – defines which transformation functions need to be

run against the variables.
xmlns – defines namespace for XPath expressions.

ModSecurity 2 Rule Language 21 / 30

Audit Log Sanitisation Actions

There are four actions:
sanitiseArg
sanitiseMatched
sanitiseRequestHeader
sanitiseResponseHeader

Examples:
SecAction nolog,pass,sanitiseArg:p
SecAction \
nolog,pass,sanitiseRequestHeader:Authorization
SecRule ARGS secret \
nolog,pass,sanitiseMatched

ModSecurity 2 Rule Language 22 / 30

Variable Actions

Working with environment variables:
setenv:name=value
setenv:!name

Working with variables:
setvar:tx.score=10
setvar:tx.score=+5
setvar:!tx.score
deprecatevar:session.score=60/3600
expirevar:session.blocked=3600

ModSecurity 2 Rule Language 23 / 30

Collection Actions

initcol – create a persistent collection:
initcol:ip=%{REMOTE_ADDR}

setsid – initialise session storage:
SecRule REQUEST_COOKIES:PHPSESSID !^$ chain,nolog,pass
SecAction setsid:%{REQUEST_COOKIES.PHPSESSID}

This action will initialise variable SESSIONID.
Use SecWebAppId directive to create session

storage namespace for each application.

ModSecurity 2 Rule Language 24 / 30

Built-in Collection Variables

Some variables are automatically generated:
CREATE_TIME
KEY
LAST_UPDATE_TIME
TIMEOUT
UPDATE_COUNTER
UPDATE_RATE

Some variable names have pre-defined purpose:
BLOCKED
SCORE

ModSecurity 2 Rule Language 25 / 30

Other Actions

 Execute external script:
exec:/bin/script.pl

 Update transaction settings dynamically:
 ctl

 auditEngine
 auditLogParts
 debugLogLevel
 requestBodyAccess
 requestBodyLimit
 requestBodyProcessor
 responseBodyAccess
 responseBodyLimit

 For example:
 ctl:auditEngine=off

ModSecurity 2 Rule Language 26 / 30

Transformation Functions (1)

Transformation functions will automatically
convert data before matching:

hexDecode

hexEncode

htmlEntityDecode

escapeSeqDecode

normalisePath

normalisePathWin

md5

sha1

lowercase

replaceNulls

compressWhitespace

replaceComments

urlDecode

urlDecodeUni

base64Encode

base64Decode

ModSecurity 2 Rule Language 27 / 30

Transformation Functions (2)

The following is performed by default (and in
this order):
lowercase
replaceNulls
compressWhitespace

But you can change the default setting for all
subsequent rules:

SecDefaultAction log,deny,status:500,\
t:replaceNulls,t:compressWhitespace
Or, just for one rule:
SecRule ARG:base64 ABC t:base64decode

ModSecurity 2 Rule Language 28 / 30

Complete XML Example (1)

Detect XML and instruct ModSecurity to parse it:

Phase 1
SecDefaultAction phase:1

Detect XML requests and process them as XML
SecRule REQUEST_HEADERS:Content-Type ^text/xml$ \
nolog,pass,ctl:requestBodyProcessor=XML

ModSecurity 2 Rule Language 29 / 30

Complete XML Example (2)

Phase 2
SecDefaultAction phase:2

Stop on request body processing errors
(e.g. XML is not well formed)
SecRule REQBODY_PROCESSOR_ERROR "@eq 1"

Validate XML against a DTD
SecRule REQBODY_PROCESSOR "^XML$ chain
SecRule XML "@validateDTD /opt/apache-frontend/conf/xml.dtd"

Look into only one part of the XML
SecRule XML:/person/name/firstname/text() Ivan

ModSecurity 2 Rule Language 30 / 30

THE END!

Questions?

