
ModSecurity 2.0 Webcast:
Answers To Common Questions

2

Who am I?

Breach Security
ModSecurity Community Manager
Director of Application Security Training

Courseware Developer/Instructor for
the SANS Institute
Center for Internet Security’s Apache
Benchmark Project Team Leader
Web Application Security Consortium
(WASC) Member
Author of Preventing Web Attacks
with Apache (Addison/Wesley)

3

Official ModSecurity Training

Developing ModSecurity Courses and a
Certification (Estimated Q1 2007
availability)

Deployment and Management
Rules Writing Workshop
Breach Certified ModSecurity Expert (BCME)

Will be available in two formats
Online – self paced
Onsite instruction (depending on class size)

4

Poll Questions

In order to better support the ModSecurity
Community, we need to fully understand its
requirements and needs
Please answer the following Poll Questions
related to ModSecurity
Your responses will help to drive future
development and prioritization of offerings

Common Question:
What’s new in ModSecurity 2.0?

6

New ModSecurity 2.0 Features

Five processing phases (where there were only two in 1.9.x). These are:
request headers, request body, response headers, response body, and
logging. Those users who wanted to do things at the earliest possible
moment can do them now.
Per-rule transformation options (previously normalization was implicit and
hard-coded). Many new transformation functions were added.
Transaction variables. This can be used to store pieces of data, create a
transaction anomaly score, and so on.
Data persistence (can be configured any way you want although most people
will want to use this feature to track IP addresses, application sessions, and
application users).
Support for anomaly scoring and basic event correlation (counters can be
automatically decreased over time; variables can be expired).
Support for web applications and session IDs.
Regular Expression back-references (allows one to create custom variables
using transaction content).
There are now many functions that can be applied to the variables (where
previously one could only use regular expressions).
XML support (parsing, validation, XPath).

7

New Features – Processing Phases

Five processing phases (where there were only two in
1.9.x)

Phase 1 - Request headers
Phase 2 - Request body
Phase 3 - Response headers
Phase 4 - Response body
Phase 5 - Logging

Those users who wanted to do things at the earliest
possible moment can do them now
This many phases allow you to decide what you want to
happen at key points of transaction processing

8

ModSecurity 2.0 Processing Phases

9

New Features - Transformation Functions (1)

Transformation functions will automatically convert data before
matching
Previously, normalization was implicit and hard-coded
Many new functions were added

hexDecode

hexEncode

htmlEntityDecode

escapeSeqDecode

normalisePath

normalisePathWin

md5

sha1

lowercase

replaceNulls

compressWhitespace

replaceComments

urlDecode

urlDecodeUni

base64Encode

base64Decode

10

New Features – Data Persistence/Collections

Can now track multiple requests!
Can be configured any way you want although most
people will want to use this feature to track IP addresses,
application sessions, and application users
initcol – persistent collection based on source IP:

SecAction initcol:ip=%{REMOTE_ADDR},nolog,pass

setsid – session storage based on app session ID:
SecRule REQUEST_COOKIES:PHPSESSID !^$

chain,nolog,pass
SecAction setsid:%{REQUEST_COOKIES.PHPSESSID}

11

The Advantage of Variables

Variables allow you to move from the "all-or-nothing" type
of rules to a more sensible anomaly-based approach.
The all-or-nothing approach works well when you want to
prevent exploitation of known problems or enforce
positive security, but it does not work equally well for
anomaly detection or multiple request issues (DoS).
For the latter it is much better to establish a per-
transaction anomaly score and have a multitude of rules
that will contribute to it.
Then, at the end of your rule set, you can simply test the
anomaly score and decide what to do with the
transaction: reject it if the score is too large or just issue a
warning for a significant but not too large value.

12

Variable Actions

Working with variables:
set the IP collection score to 10
setvar:ip.score=10
increase the IP collection score by 5
setvar:ip.score=+5
remove the IP collection score
setvar:!ip.score
decrease the IP collection score by 60 points every hour
deprecatevar:ip.score=60/3600
expire a blocked IP collection after an hour
expirevar:ip.blocked=3600

13

Full Example – Initcol/Variables

#Specify the local directory for collection storage
SecDataDir /path/to/apache/logs/state

Initiate a collection based on the source IP address
SecAction initcol:ip=%{REMOTE_ADDR},nolog,pass
SecRule IP:BLOCKED “@gt 0”

Increase the IP collection score based on filter hits
SecRule REQUEST_FILENAME “/cgi-bin/phf" pass,setvar:ip.score=+10
SecRule REQUEST_FILENAME “cmd.exe” pass,setvar:ip.score=+10
SecRule REQUEST_METHOD “TRACE” pass,setvar:ip.score=+5

Evaluate the overall IP collection score
SecRule IP:SCORE "@ge 30“ \
“setvar:ip.blocked=3600,deprecatvar:ip.blocked=1/1”

Common Question:
What type of security models does
ModSecurity 2.0 support?

15

ModSecurity Protection Models (1)

1. Negative security model
Looking for bad stuff/known attack signatures
Core Rules – modsecurity_crs_40_generic_attacks.conf

2. Positive security model
Verifying input is correct.
Core Rules

modsecurity_crs_20_protocol_violations.conf.
modsecurity_crs_30_http_policy.conf

3. Anomaly-based Model
Must be able to identify abnormal requests/responses
Rules can be created to increase anomaly score based on
4XX/5XX level status codes

16

ModSecurity Protection Models (2)

4. External patching
Also known as "just-in-time patching" or "virtual patching“
Provides immediate protection from identified vulnerabilities

5. Extrusion Detection Model
Monitoring outbound data to ensure sensitive information does not
leave your network (i.e. – Information Leakage)
Core Rules – modsecurity_crs_50_outbound.conf

6. Heuristic-based Model
Statistical calculation which correlates various detection methods –
signature match + RBL status
ModSecurity now has this capability with the following new features:

Data persistence
Transactional/Session scoring
Blocking can be based on an overall score

Common Question:
Can you show me some examples of
ModSecurity 2.0 fixing specific issues?

18

Virtual Patch Example - Oracle iSQL*Plus
buffer overflow

CVE 2002-1264 - Buffer
overflow in Oracle iSQL*Plus
web application of the Oracle 9
database server allows remote
attackers to execute arbitrary
code via a long USERID
parameter in the isqlplus URL.
Oracle Response - There is
no workaround to address the
potential security vulnerability
identified above. Some
patches took 2 months
With ModSecurity, a
translated Snort signature
could have been used to
implement an Immediate
Patch

19

Convert Snort Signature to ModSecurity Format

Snort Signature
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-MISC Oracle iSQLPlus login.uix username
overflow attempt"; flow:to_server,established;
uricontent:"/login.uix"; nocase;
pcre:"/username=[^&\x3b\r\n]{250}/smi";
reference:bugtraq,10871;
reference:url,www.nextgenss.com/advisories/ora-
isqlplus.txt; classtype:web-application-attack; sid:2703;
rev:1;)

ModSecurity Rule
SecRule REQUEST_URI “login.uix$” “chain,deny,status:403,\
phase:2,msg:’Oracle iSQLPlus login.uix username overflow
attempt’”

SecRule REQUEST_BODY “username=[^&\x3b\r\n]{250}”

20

Extrusion Detection – DB Errors

ModSecurity can identify and block outbound data such
as error messages from back-end databases
SecRule RESPONSE_BODY “ODBC Error Code”
“deny,log,status:503,phase:4,msg:’Database
Error Message Detected’”

21

Denial of Service Protections

Apache module - Mod_Evasive
Mod_Evasive does not use shared memory and can only identify
multiple requests on the current httpd process
Evasion possibilities if client does not use Keep-Alives and
forces the web server to spawn new processes for each request

ModSecurity - SecGuardianLog directive + httpd-guardian
perl script

Can identify and react to both DoS and Brute Force Attacks by
monitoring the speed of requests

Initcol – Use the “@ge” operator to evaluate the
IP:UPDATE_RATE built-in collection variable.

SecRule IP:UPDATE_RATE “@ge 100”

Common Question:
How do I install ModSecurity 2.0?

23

ModSecurity 2.0 Installation

Currently, ModSecurity 2.0 can only be installed as a
DSO module in Apache

There are plans to update the configuration/compilation code to
allow for static installations with Apache

Although it is installed as a DSO, do not use apxs directly
ModSecurity 2.0 has a standard Makefile for compilation
It does use apxs behind the scenes

Update the Makefile “top_dir” setting with the correct path
to your Apache ServerRoot directory
Use make and make install

Common Question:
How can I deploy ModSecurity?

25

Reverse Proxy Deployment

Open Source ModSecurity users can deploy software on
an Apache server acting as a Reverse Proxy server
Breach ModSecurity Pro M1000 appliance

26

Reverse Proxy Deployment Pros/Cons

Pros
Single point of access – choke points for applying security
settings and makes management easier
Increased performance – if SSL accelerators/caching used
Network isolation – divides web into multiple tiers
Network topology hidden from the outside world
You can implement “Virtual Patches” to protect vulnerable web
apps that either don’t have a patch available or where the code
can not be changed

Cons
A potential bottleneck
Point of failure
Requires changes to network (unless it's a transparent reverse
proxy)
Must terminate SSL (can be a problem if application needs to
access client certificate data)

27

M1000 vs. Building Your Own Appliance

Building a ModSecurity reverse proxy appliance is non-trivial. Need
specific skill sets - expert in Apache, web application security, and
ModSecurity.
The M1000 is a Breach certified appliance, hardened for security,
and updated with new releases for bug fixes and optimizations.
M1000 includes certified rule sets guaranteed to be accurate and
efficient. Includes regulator/application rule sets (PCI and OWA).
The M1000 includes a graphical user interface with comprehensive
alert management, configuration, and reporting facilities (HTML,
PDF) that lower the total cost of ownership of the solution.
The M1000 includes first year support and maintenance at no
additional charge. In addition to leveraging the ModSecurity
community, customers of the M1000 have access to the core
developers and the world's experts in ModSecurity.

28

Embedded Mode Deployment

Open Source ModSecurity users can deploy software on
an Apache server to protect the local server and web
application

29

Embedded Mode Deployment

Pros
Easy to add

No network changes required
Little to no cost as no new hardware is required

Not a point of failure.
Only protecting the local web server

Cons
Only protects the local server
Uses web server resources
Management of configurations and log files is more
difficult as you have multiple installs

Common Question:
How do I migrate from 1.X to 2.0?

31

Migration Consideration/Issues

ModSecurity 2.0 only works with the Apache 2.X branch
(no current code/support for Apache 1.X version)

If you are running Apache 2.X, then there is no problem.
If you have Apache 1.X hosts, then you can still use ModSecurity
2.0, but you would have to use it in a Reverse Proxy front-end.

Rules Migration Issues
Must change SecFilter/SecFilterSelective to SecRule equivalents
Need to specify the correct processing
phases/locations/transformation functions

Integrating Custom Rules with Core Rules
Should specify your custom rules in a separate file
Call them up after the modsecurity_crs_10_config.conf file, but
before the http protocol rules

Common Question:
Why are these new rules killing my server
performance?

33

Performance Considerations – Writing Rules

The number of rules used will impact performance, so be wary of
implementing too many/unneeded negative filter rules

“GotRoot-Effect”
Converted Snort rules

Joining/Grouping multiple rules into one RegEx line increases
performance (Perl alternation feature with the “|” character)

Instead of individual lines –
► SecRule REQUEST_URI “file1\.cgi”
► SecRule REQUEST_URI “script2\.cgi”

Combine/Group them based on LOCATION
► SecRule REQUEST_URI “(file1|script2)\.cgi”

Optimized RegEx rules by using Grouping Only Parentheses can cut
the validation time by 50%

SecRule REQUEST_URI “(?:(script[1-3]|file[1-3])\.cgi)”

Common Question:
How do I manage my ModSecurity
Installations?

35

ModSecurity Console (1)

Open Source ModSecurity Console
Log & alert centralization solution, can capture alerts or entire
traffic streams.
Daemon with a GUI (web application).
Single package (comes with its own web server and database).
Runs on all platforms that support Java 1.4 or better.
Can received logs form a limited number or remote sensors
(3)
Does not provide Command and Control of remote sensor
configs

Enterprise Manager Console (Feb. 2007)
Will provide both centralized log management and Command
and Control of remote ModSecurity configurations

36

Console Home Page

37

Transaction Search Interface

38

Alert Details Interface

39

Wrap-Up

Remember – Official ModSecurity Training is coming
soon!

Online and Onsite offerings

Beta version of the updated Reference Guide is available
from the modsecurity.org website

In the modsecurity-apache_2.1.0-rc5.tar.gz archive

Let’s initiate Q&A on the modsecurity-user-mail list.
Let me know what other Webcast Topics you would like
to see.
Please contact me directly with any commercial support
questions - Ryan.Barnett@breach.com
Thanks for your time.

