

"The Core Rule Set":
Generic detection of application layer
attacks

Ofer Shezaf
ModSecurity Core Rule Set Project Leader
CTO, Breach Security

Web Application Firewalls
vs.

Intrusion Prevention Systems

Multiple Deployment Modes

`

Web
Server

Firewall

`

Web
Server

Firewall

In-Line mode

Embedded mode

`

Web
Server

Firewall

Out of line mode

Three Protection Strategies for WAFs

1. External patching
 Also known as "just-in-time patching" or "virtual patching".

2. Positive security model
 An independent input validation envelope.
 Rules must be adjusted to the application.
 Automated and continuous learning (to adjust for changes) is the key.

3. Negative security model
 Looking for bad stuff,
 Mostly signatures based.
 Generic but requires some tweaking for each application.

IPS?

Virtual Patching

 Testing reveals that the login field is vulnerable to SQL
injection.

 Login names cannot include characters beside
alphanumerical characters.

 The following rule will help:

<LocationMatch "^/app/login.asp$">
SecRule ARGS:username "!^\w+$" "deny,log"

>/LocationMatch>

Positive security

 Very hard to create, requires learning by:
 Monitoring outbound traffic (match input to web server request)

► Caveats: JavaScript, Web Services
 Monitoring inbound traffic (normal behavior):

► Caveats: Statistics, attacks in learning period.

<LocationMatch "^/exchweb/bin/auth/owaauth.dll$">
 SecDefaultAction "log,deny,t:lowercase"
 SecRule REQUEST_METHOD !POST
 SecRule ARGS:destination " URL" "t:urlDecode"
 SecRule ARGS:flags "[0-9]{1,2}"
 SecRule ARGS:username "[0-9a-zA-Z].{256,}"
 SecRule ARGS:password ".{256,}"
 SecRule ARGS:SubmitCreds "!Log.On"
 SecRule ARGS:trusted "!(0|4)"
</LocationMatch>

 The same, but for every field in every application

Site

Positive Security

Site Map

Site Status

URLs

Parameters

Parameter
Types

Negative Security

An IPS, but:
 Deep understanding of HTTP and HTML

 Breaking up to individual fields: headers, parameters, uploaded files.
 Validation of field attributes such as content, length or count
 Correct breakup and matching of transactions and sessions.
 Compensation for protocol caveats and anomalies, for example cookies.

 Robust parsing:
 Unique parameters syntax
 XML requests (SOAP, Web Services)

 Anti Evasion features:
 Decoding
 Path canonizations
 Thorough understanding of application layer issues: Apache request line

delimiters, PHP parameter names anomalies.
 Rules instead of signatures:

 Sessions & state management, Logical operators, Control structures.

The Core Rule Set

Detection of generic app layer attacks

 Core Rule Set available for ModSecurity at:
 http://www.modsecurity.org/projects/rules/index.html
 Probably translatable to any App Firewall

 Benefits from ModSecurity features:
 Anti Evasion
 Granular Parsing

 Detection Mechanisms:
 Protocol Validation
 Generic Attack Signatures
 Known Vulnerabilities Signatures
 More…

http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html

Protocol Validation

Protocol Violations

 Protocol vulnerabilities such as Response Splitting,
Request Smuggling, Premature URL ending:
 Content length only for none GET/HEAD methods
 Non ASCII characters or encoding in headers.
 Valid use of headers (for example, content length is numerical)
 Proxy Access

 Attack requests are different due to automation:
 Missing headers such as Host, Accept, User-Agent.
 Host is an IP address.

Protocol Policy

 Policy is usually application specific:
 Some restrictions can usually be applied generically.
 White lists can be build for specific environments.

 Items that can be allowed or restricted:
 Methods - Allow or restrict WebDAV, block abused methods

such as CONNECT, TRACE or DEBUG.
 File extensions – backup files, database files, ini files.
 Content-Types (and to some extent other headers)

 Limitations on sizes:
 Request size, Upload size,
 # of parameters, length of parameter.

Application Layer Signatures

IDS/IPS signatures

 Simple text strings or regular expression patterns
matched against input data.

 Usually detect attack vectors:
 Used for known vulnerabilities, while web applications are

usually custom made.
 Variations on attack vectors are very easy to create

Snort signature
for Bugtraq vulnerability #21799

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(
msg:"BLEEDING-EDGE WEB Cacti cmd.php Remote Arbitrary
SQL Command Execution Attempt";
flow:to_server,established;
uricontent:"/cmd.php?"; nocase;
uricontent:"UNION"; nocase;
uricontent:"SELECT"; nocase;
reference:cve,CVE-2006-6799; reference:bugtraq,21799;
classtype: web-application-attack; sid:2003334; rev:1;

)

Does the
application
accepts POST
requests?

UNION and
SELECT are
common English
words. So is
SELECTION

An SQL injection
does not have to use
SELECT or UNION

/cacti/cmd.php?1+1111)/**/UNION/**/SELECT/**/2,0,1,1,12
7.0.0.1,null,1,null,null,161,500, proc,null,1,300,0, ls
-la >
./rra/suntzu.log,null,null/**/FROM/**/host/*+11111

Snort Signature:

Exploit:

Signature built for
specific exploit

Case study: 1=1

 Classic example of an SQL injection attacks. Often used
as a signature.

 But, can be avoided easily using:
 Encoding: 1%3D1
 White Space: 1 =%091
 Comments 1 /* This is a comment */ = 1

 Actually not required at all by attacker.
 Any true expression would work: 2 > 1
 In some cases, a constant would also work. In MS-Access all the

following are true: 1, “1”, “a89”, 4-4.

 No simple generic detection

WAF Rules

 Multiple operators and logical expressions:
 Is password field length > 8?

 Selectable anti-evasion transformation functions:
 Path normalization can be used also in parameters.
 Base64 decode for basic authentication header.

 Control structures:
 If content is XML or parameters names are not standard,

perform a different set of rules.
 Variables, Session & state management:

 Aggregate events over a sessions.
 Detect brute force & denial of service.
 Audit user name for each transaction

Generic application layer signatures

 Detect attack indicators and not attack vectors:
 xp_cmdshell,
 “<“, single quote - Single quote is very much needed to type

O'Brien
 select, union – which are English words

 Aggregate indicators to determine an attack:
 Very strong indicators: xp_cmdshell, varchar,
 Sequence: union …. select, select … top … 1
 Amount: script, cookie and document appear in the same input

field.
 Sequence over multiple requests from the same source.

Back to Bugtraq vulnerability #21799
The Core Rule Set Generic Detection

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|
REQUEST_HEADERS|!REQUEST_HEADERS:Referer \

"(?:\b(?:(?:s(?:elect\b(?:.{1,100}?\b(?:(?:length|count|
top)\b.{1,100}?\bfrom|from\b.{1,100}?\bwhere)|.
?\b(?:d(?:ump\b.\bfrom|ata_type)|(?:to_(?:numbe|cha)|inst)r))|
p_(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute(?:sql)?|
makewebtask)|ql_(?:… … … \

“capture,log,deny,t:replaceComments, t:urlDecodeUni,
t:htmlEntityDecode, t:lowercase,msg:'SQL Injection Attack. Matched
signature <%{TX.0}>',id:'950001',severity:'2'“

Supports any type
of parameters,
POST , GET or any
other

Common evasion
techniques are
mitigated

Every SQL injection
related keyword is
checked

SQL comments are
compensated for

Back to Bugtraq vulnerability #21799
Virtual Patching

Simpler, isn’t it?

<LocationMatch :"/cmd.php$">
SecRule QUERY_STRING "^[\d\s]*$” “deny,log"

>/LocationMatch>

SecRule REQUEST_FILENAME :"/cmd.php$" “deny,log"

Or

Parameters Must
Be Numeric

Actually script
should not be

Odds and Ends

Malicious Robots

 Detection of malicious robots:
 Unique request attributes: User-Agent header, URL, Headers
 Black list of IP addresses

 Not aimed against targeted attacks, but against general malicious
internet activity:
 Offloads a lot of cyberspace junk & noise
 Effective against comment spam.
 Reduce event count.

 In addition:
 Detection of security scanners
 Detection of non malicious robots (such as search engines).
 Confusing security testing software (HTTPrint)

Trojans and Viruses

 Major problem at hosting environments
 Uploading is allowed.
 Some sites may be secure while others not.

 Generic detection:
 Check upload of Viruses.
 Check upload of Trojans – AV software is not very good at that.
 Check for access to Trojans:

► Known signatures (x_key header)
► Generic file management output (gid, uid, drwx, c:\)

Error conditions

 Last line of defense if all else fails
 Provide feedback to application developers
 Important for customer experience
 Makes life for the hacker harder

Future Plans

 Session bases protection:
 Brute force detection.
 Scanner and automation detection based on rate and result

code.
 Anomaly scoring.

 XML protection:
 Schema validation for known XML payloads, such as SOAP.
 Context based signature check in XML using XPath.

Thank You!

Ofer Shezaf
ofers@breach.com

