
 
 

ModSecurity
The Open Source Web Application Firewall

Ivan Ristic
Chief Evangelist
Breach Security



Introduction
Ivan Ristic

 Background as software developer
and technical architect.

 Web application security and
web application firewall specialist.

 Author of Apache Security (O’Reilly, 2005).
 Author of ModSecurity.



Case for Web Application Firewalls

 Web applications are written using 
loosely connected technologies and 
inherently insecure.
►New issues are still being discovered.

 We need something reliable, for 
monitoring and protection, now.

 The term web application firewall has 
been overloaded… many times over.



Enter ModSecurity

 It is an open source web application 
firewall.

 Most widely deployed web application 
firewall according to Forrester Research.

 That’s not surprising because it is:
► Readily available.
► Full-featured.
► Stable and reliable.
► Well documented.
► Does what it says on the box.



History of ModSecurity

 Project started in 2002:
 “Wouldn’t it be nice if I had something working

on the outside to monitor what’s going on?”

 Commercial support through Thinking Stone 
in 2004.

 Acquired by Breach Security in 2006.
 Breach Security pledges to support the open 

source nature of the project, adds resources.



The Open Source Advantage

Four main points:
1. Availability

2. Collaborative development

3. Transparency

4. Education



Deployment Architectures

 Embed into your existing web servers.

 Deploy as a network gateway combining 
Apache working as reverse proxy with 
ModSecurity.



Use Cases

 Intrusion detection and prevention tool
that speaks HTTP natively.
► Negative security model.
► Positive security model.

 Traffic logging.

 Just-in-time patching (a.k.a. virtual patching).

 Web application hardening.
► For example, PDF XSS defence.



ModSecurity Philosophy

 It’s essentially a simple event-based 
programming language bundled with a bunch 
of parsers and transformation functions.

 Common tasks are easy, complex tasks
are possible.

 Nothing is done implicitly. You generally need 
to know what you’re doing or use pre-
packaged rule sets.

 Document everything.



Interesting Features

 Five processing phases for every transaction.

 Flexible data transformation (mostly for anti-evasion).

 Stateful operation; supports any number of data 
“collections” (e.g. sessions, users, IP addresses).

 Support for anomaly scoring and event correlation.

 Understands sessions and users.

 Block by redirecting to Honeypot.

 XML support (parse, validate, and extract with XPath).

 Ability to easily extend the rule language.



ModSecurity 2.2+ Improvements

 Parallel (set-based) matching.

 GeoIP resolution.

 Performance improvements and optimisations (only 
relevant for very large rule sets but still).

 Modularity.

 Writing rules in C (and possibly using a scripting 
language – e.g. Lua).

 Support for any character encoding on input.

 Other interesting features: link rewriting, cookie 
protection, PDF XSS protection, etc.



Related Projects

 ModSecurity Core Rules
► Coherent set of rules designed to address 

common web application security issues.

 ModSecurity Community Console
► Alert aggregation and GUI.
► Free for up to 3 sensors.

 Web Application Firewall
Evaluation Criteria (WAFEC)

 Distributed Open Proxy Honeypots



Questions?

Thank you!

Ivan Ristic

ivan.ristic@breach.com


