The Linux Cookbook: Tips and Techniques for Everyday Use:

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

The Linux Cookbook: Tips and Techniquesfor EVEryday USE...........uuuuvuiriieirieeiieeiieeieeeeeeeeeeeeeeeeeeseeeeseeseees 1

|md =) =101 NPT TTT T UT TR

1.0OFOIrMALOT RECIPES. .. vvviiiiiiiiiiiitieettee ettt et e e et e e e et ettt e e e e e et e e e e et e e et e e et ee et e e e e e e e e e e aaaeaaaaaaaaaaaaaaaaaaans 4
1.1 AssumptionsScoOPEANAEXCIUSIONS.......ccviviiiiiiiiiiiiieie ettt 5
1.2 TypodraphiCalCONVENLIONS.........ccoii it baaneanneanrannee 6
1.3Versions.LateStEditioN, ANAETTALA.coovvuniiieie e e e e e e e s e e e e eaaa s 7

L. AACKNOWIEAUMENES. ...eevveiiiiiieeieeee ettt ettt et e et e s e e e aaeeas 8

3.1.1PoweringUP the SYSTEML........uuuuiiiiiiiiiiiiiiiiiiiiiiitiireebe e reearesseesessseesesesssssesssesssssssseeseeeenes 21
3.1.2Turning Off the SYSIEM......cciiiie e eeasssesssseesseeeees 21
3.2AcCoUNtSANAPIIVIIEOES.o 21
3.2.1L.09ginNgIN tO the SYSIEM.....ciiiiiiiiiiieeceee e 22
3.2.21.09gingOUt Of thE SYSIEM.....eviiiiiiieiieeeeeee e 24
T O] 1 1ST0] [= 7 T o 24
3.3.1SwitchingbetWEENCONSOIES.cvveeiiieeiieeeeeee e 25
3.3.2SCrollingthe CONSOIETEXLvveiiiiiiieieieeeeee et 26
3.3.3Keysfor ConsoleManipulation..............couvviiiiiiiiiiiii e 26
3.4RUNNINGACOMMANG........eiiiiiiiiiiiiiieee e 27
3.5ChangingYOuUr PASSWOI..........cooiiiiiee e 28
3.6 LiIStING USEIACHVILY ovieeiiiiiiiiiiieiieee e 29

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

5.6.4Cho0singa WindOW MaNAGEE........cccieeeiieeieeeeeeeeee e e s aaasaanssanssnnennne 76

PART TWO: FlES. .. iuttiieeiitett ettt ettt ekttt e 4ok e e 44kt 44 ek et e e st e e e et e e e e et e e e anbneeeeaa 7

(S 11T =T aTo DT LYot (o =TT TTTPRT 7

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

o 110 11T N 1[PPI 11
8.1FindingAll FilesThatMatCha PatterN...........uuuuuuiiriiiiiiiiiiiiieeieeirererseereeereereeereeerererererrererereeeeeees 111
8.2FINdINQ FileSiN @ DIrECIONY TIEE. .. i iie e e ee e bbb aaebaseannssnsssnsesnnennees 112

8.2.1FindingFilesin a Directory Treeby NamME........ccccoeeeiiiiiiiav e 112
8.2.2FindingFilesin a Directory Tre€hY SiZE.........uuvurviuiriiiiiiiiiiiiriieeiseeirereeeeseerseereeeeeee.. 114
8.2.3FindingFilesin a Directory Treeby Modification TIME..........cccvvvveevieireeiiieiiieieeeeen, 115

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

12.3CHECKINGGIAMIMAL.ciiiiiiiiiiieeiiee ettt ettt ettt e e e e et e et e aeaeaaaaaaaaeas 179
12.3.1CheckingTextfor MiSUSEAPRNIASES...........cccovviiiiiiieiiieeeeeeeeeeeeeeeeeeee e, 180
12.3.2CheckingTextfor DOUBIEAWOIASccoeeeiieeii e nreanees 181
12.3.3CheckingTextfor Readability.............coooiiiiiiiei i 182
12.3.4CheckingText for Difficult SENENCES..........ccoeeiiiiiiiii e 183

12.3.5CheckingTextfor LONG SENLENCES.......ccoieeeiieieieee e ee e e 183
12.4Word LiStS aNUREIEIENCHEIIES. ieere ettt ettt et e et e et e e e e e e e e e e e aenans 183

G N 1= N O 01 193
13.6.1Making SImpleTexXt CUL=UDSccoooiiiiee e eee e 194
13.6.2Making RandomWord CUT=UDSccoieiieiiiiiii s aaesassasseannennsennees 194
13.6.3Making CUt=—UPSIN EMEACS.......uuuuuririiirriieeireeireeseeeseeeseessesssseseeesseseerererereereerrrerrrereee 195

Vi

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

15.6SearChinQTEXEIN EMACS . .uuuuuuiiiiiiiiiiieiiieeeeeeeeeeeeeeeeee e e e e e e e e e eee e e e e e e et e e e e e et et aeeeeaaeaaeaaaaaaaaaaaaaaaaaaaaaans 222
15.6.1Searchindncrementallin EMACS..........coooeeiiiiiiiii i 222
15.6.2Searchindor aPhrasan EMACS...........cccooeeiiiiiiiiii e, 223
15.6.3Searchindor aRegexpin EMACS......ccccvvviiiiiiiiiiiiieeeeeeeeeeeeee e, 223
15.6.4Searchinc@andReplacindn EMACS.........ccooeiiiiiiiiii e 224

15.7Searchindlextin Less

Vii

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

16.5.3GeneratingutputfromM SGML........cccvvviiiiiiiiiiiiciieeeeeeeeeee e 247
16.60therWord Processorand TypesettingSYStEMS........ccooovieiiiiiiiie e, 248
A o 1N 2!
A 1, o 1 1€ 25
17.1.1SelectingaN X FONENGIME.uuuuuiiiiiiiiiiiiiiiiiiat bbb aseasseassssesesssesssssesseeeeees 251
17.1.2Listing Available X FONTS......ccoooiiiiiiee e 252
17.1.3Displayingthe Charactersn anX FONL.......ccccoeeeiiiieiiiii e 253
17.1.4ReSiZINGtNE XIEIM FONL.t ee s s s sssssesseeeeees 253
A L0 A 1Yo < 01 Y 253
17.2.1Settingthe CONSOIEFEONLuuuuviueiiiiiiiiiittetetrttreebeesbeseeseesesssesssssssessseessseeeeseeeseeeeeeeeeees 254
17.2.2Displayingthe Charactersn a ConsoleFoNnt.............cvvvvvvviiiiiiiiiiiiiiiieieeeeeeeee 254
ARG T =) 1 £ 25F
17.3. THOMNZONTAI TEXEFONLSuu et e e e et e e e et e e e s e b e e e e e aaa s 255
17.3.2Making @ TEXEBANNEL.uuuuuiuuuieiiiiiiiireuursererssressasssessasssressssssseesseeseeseaereeerrerrrrerereeeees 256
L@ | LT o) A 00 T 257
Y el I O 10 1 7= T PP 25¢
18. VIEWING IMAUES. . .eeieeeieeiiieiiiee ettt ettt ettt ettt ettt et e et e e e et e et ettt e et e e et e e e e e e et eaaaaaaaaens 25
18.1PreVIEWINGPIINEFIIES. ... 259
18.1.1PrevieWiNQADVI FlEuuuiuuiiiiiiiiiiiiiiiiiiitiseiestssssssssssssssssssssessseeseessessserererereeeeeeeeees 259
18.1.2Previewinga POStSCHPEIIE..........cooeiee e 260
18.1.3PreVieWiNQaPDEFIIE.uuiiiiiiiiiiiiiiiiiiiiiiiiiiieeiaeseeesaesessessssssessseesseesessseeseeeeeeeeeeeeeees 261
18.2VIEWING ANTMAGEIN X 11utvvviiiiiiiriiieeierieeeeeeeeeeeeeeeeeeseeeeeerteetreetttetttttattatttttttttttattaataaataaaaaaeaaaaaaaeeees 261
18.2.1BrowsingImageColleCtiONSIN X......cvvvviiiiiiiiiiiieiiieeeeeeeeeee e, 264
18.2.2PuttinganImagein the ROOEWINAOW..........c.ccvviiiiiiiiiiiiiiiiiceieceeeeeeeeeeeeeeeeeeee 264
18.3BrowsingImagesin @CONSOIE.ccoiei i eeeieei e e bbbt 265
18.4Viewing animagein aWED BIrOWSEN...........uuuuruuriuuiiirirrrissreesresresersssrsrssssssssseeeeereerrr 266
18.5BrowSingPNOIOCDAICHIVESuuuuiiuiiiiiiitiiiieiitteeteeb et aeseeeessessseesseesessssesseeeseeeseeeeeeeeeeseaeeaeees 266
18.6 AdditioNal IMAGEVIEWETS.coe e et aaaansannranees 267
LS T LT T = 10 T PSR 26
19.1TranSfOrMINAIMAGES.evviiiiiieieiee ettt e e e e e e e e e e e e e 268
19.1.1Changinghe Sizeof anIMAagE........ccoeeeeiiii e 269
19.1.2ROtAtINGAN IMAGE. it bbb bbb b e s beabessbs s s s sssssssssssssssssssenssnneeneeeees 272
19.1.3Adjustingthe Colorsof aNIMAQGE........uvvviiiiiiiiiiieiieeeeeeeeeeeeee e 272
S Y AN o) v= 1a]aTo r= L [0 0= Lo [PP 274
19.1.5AddIiNg BOrdersto anlmage........cooeeieeeiieeieee e ee e e ee e ee e 275
19.1.6Making an MagEMONTAGEuuuurrrrerrerrreeererreeeeeeeeeeeseeeseseseeseeesersrererrrereereerererreereees 276
19.1.7COMDININGIMAGES. .. vvvveevieeiieeeierieeseeeeeereeeeeeeeeeeeeeeeseesseeeeeeeseeseesaeeeeeeraeetreaaeeaaeraaeeaaeees 276
19.1.8Morphing TWO IMagesSTOQENEE.o 277
19.2ConvertinglmageshetWeemFOIMALS..........cccoeei i 278
19.3Editing IMageswith thEGIMPcooi i ae bbb anreranraneennees 280
19.4InteractivelmageEditorSandTOOIS.ccvviiiiiiiiiiiiieeeeee e 281
20. IMPOITING IMAGES ...ttt a s aa e s s s st sttt s s st s sttt st s s s s st s s s s s st s s s st s s s s s s s s s s s e e s nnnsnnnnn e 28

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

A A Tor-Tal a1 10 [n - To =T TR PP PPPPPPPPP 285
20.2.1Listing Available SCanNEDEVICES..........cccooeiiiiiiii e, 285
20.2.2T€StNQASCANNEL......ciiiiiiiiieeee et 286
20.2.3SCANNINCANMAQGE uuuvtruiriintenuirsteerreerreeareesssessesesesseeseeeeeaeeereaeerererrrertrrrrrerrretreereees 286

20.3EXtractingPhotOCDIMAGESceiiiiiieeeieee e 287
20.3.1Convertinga PNOtOCDIMAGEuvvurureriiiiririeireeiresssssrssessssesssssseessseeseeerrreeee—————————. 288
20.3.2RemoVINGPhOtOCDHAZE.cevvieiiieiiieeeeeeeeee e, 288

21.3.1ConvertingPoStSCrPO PDEuviiiiiiiiiiieiiieiieeieeeeeeee et ee e e e e e e e e eea e 297
21.3.2ConvertingPostScripto PIAINTEXEuuuvuuevreriiieiieiieereeeieeereeeeeeeeeeseeeeeeeeeeseeeseeeseeeeees 297

PART FIVE: SOUNG. ... cteiiiiiitiiieeete ettt ettt ettt e e ekt e o4 a bt e e ek et e e st et e e ekt e e e e et e e e nbneee s 29!

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

A S RS AT TATe [£ TP 35

28.1Displayingthe DateandTiMEc.ccvviiiiiiiiieeiieee et 356

28.2Playingan Audible Time ANNOUNCEMENE..........cociiiiiiieiieeieeeeeee e, 357
ARG OF: 1 1Y 0T b= 1 5= TOT T T TP 35¢

29.20utputtinga RANAOMNUMIDEEcviiiiiiiiiiiei et 373

Xi

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

29.3Listing a SequenC®f NUMDEIS.ccoiii i ae bbb enreeanraneennees 373

29.4FINAINGPIMEFACIOIS.eeviiiiiiiieiee et 374

A S Ofo 1)Y= a 1o AN TU 001 0= = TSP 375
29.5.1Convertingan AmountbetweernJnits of Measurement..................cccoeeeeeeeeeeeeenn. 375

29.5.2Convertingan Arabic Numeralto ENgliSh.............covviviiiiiii 376
29 B0 NEIMAIN TOOIS. ..ttt e ettt ettt et e e et e e e e e e et ee e e e e et e e ea e e ee e eea e e e e reraaae 376

31.4.1Readinga Mail AHACHMENT.uuveiiiiiiiiiiieiiei ittt e e e e e e e e e e e e eeeeeeeeeeeaeeaeees 399
31.4.2Sendinga Mail AtACHMENT........uuiiiieiiiiiieiiiee e e e e e e e e e e e e eeeeeeeeeeaeeaeees 399
31.5Making an EMAl SIGNALUIEuuuuruuiiiiiiitiiieitiesireeaeeaeeessssesesssssesessassesssssessssssssssssssesssesssssssnssees 400

Xii

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

32.3ReadingTeXt from thEWEK..........uuiiiiiiiiiiiiiiiiiiit ittt ee s eessassesesseeseeeseeeeneeeees 407

B3 Ot e INEEINEL SEBIVICES. . et eeeeee et ettt et ettt e et et e e e et et e et et e e e e e e e e et e eenereea e eeen e eereenaeennns 421

33.1Connectindo ANOThEISYSIEM........ccoi i areanees 421
33.1.1Suspendin@ Connectionwith AnNOtherSystem.............cooeeeiieiiii e 423

A AMNINISTALIVE ISSUEBS. ... e eeeteeee et ettt e ettt e e e et e e e e et e e e e e e e e e e e e eeea e e e e eeea e e e aereen e e e e eaeneeeeraeeennnns 43¢

A.1 Linux andHardwareCompPatibility..........cccoeeiiuuuuiiiiiiiiiiiiii i reseseereeeeesseeeaes 439
A.2 ShuttingDOWN thE SYSIEML......cccoii e 440

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

A.3.2Installinga DebianPackade............cooovviiiiiiiiiii 443
A.3.3Upgradinga DebianPaCKAgEuvvuuiiiiiiiiiiiiiiiieeiresissersesseseseeresserereeeeererseerreerreeaeees 444
A.3.41Installinga ShellSCrPL........cooovviiieeeeeeee e, 445
A4 ADMINISTATINGUSEIS ..vvvvvvieeieeeieeeeeeeeeee et eee e e e e e e e et e e ettt et e e eeae et te et teeeatateetaeteaaaaaetaaaaaaaaaaaaaaaaaaaaaaaas 446
A.4.1MaKINgaUSEIACCOUNLcccei i 447
A.4.2 Letting UsersAccessHardwarePeripheralS...........uuuvivivieiiieiiiiiiiiiieeieeeeeeeeseeeeeeeeeeees 447
A.4.3Letting USErsMOUNEDIIVESooiviiiiiiiiieeeeee e, 447
A.5 Displayinglnformationaboutthe SYSIEML..........uuuiiiriiiiiiiiiiiiiiiiiiieeeeere e 448
A.5.1How Long Hasthe SyStemBEENUD2........uuuuiuuiiriiiiiieiieriieeerereresrseeseeeeereeeerreereereeeeeee 448
A.5.2WhatVersionof LinUX AM | RUNNING?......vvveveeiieeeieeiieeeeeeieeeeeeeeeeeeeeeseeeeeeeeeeseesseesaeess 449
A.5.3WhatVersionof DebianAm | RUNNING?........coooiiiiiiiiiiee e 450
B. LINUX RESOUICEIN TNE WED it e et e e e e e s e et e e s e eab e eeeaeas 451
O I o Y 1o 4
C.1DESIGNSCIENCELICENSE. 453
C.2Applying CopVyIeftto YOUIr WOIKcooviiiiiiieiee e 456
() e, 45
() e, 47
(B, 50
() oo, 50
(B ettt 50
(B) ettt 50
() e, 50
(B et 50
(D) ettt 50
0) PP PPPPPPPPPPPP 50
PP 50
2 PP 50
G PP PPPPPPPPPP 50
PP PPPPPPPPPPPP 50
1 PP 50
6 PP PPPPPPPPP 50
PP PPPPPPPPPN 50
S PP 50
1) PP PPPPPPPPPPP 50
240) PP 50
2 PP 50
27 PP PP 50
22) PP 50
2 PP PPPPPPPPPPP 50
22 PP 50
24 PP 50
2 TP PPPPPPPPPPPP 50
222) PP 50
222) PP 50
S0) PP 50

Xiv

The Linux Cookbook: Tips and Techniques for Everyday Use:

Table of Contents

1 PP 50

72 PP 50

G PP 50

S PP PPPPPPPPPPPP 50

1) PP 50

[T PP PPPPPPPPP 50

70 PP 50

1S PP 50

612) PP PPPPPPPPP 50

[0) PP PPPPPPPPPPP 50

5 PRSP 50

[PP 50

[PP PPPPPPPPPPPP 50

[PP 50

(0o (= Tn 01 10 [PSSP RRPPRPPRPPRR 50
(70 aTot=T 011 1210 [50
010110 (X 5(
I o] [0 G0] 01 1<) 01 P UTT TP 51
S ale Iz o] o il G0 a1 (=) 01 TP TP 52°
P o Yo 1V a1 aTE o (o Yo [a A1) o) AR TR 52

XV

The Linux Cookbook: Tips and Techniques for
Everyday Use

by Michael Stutz
NOTE: Info (the program you are reading this with) is easy to use, but it can seem hard if you are

unfamiliar with it. If you're new to Info, | recommend you run the built—in tutorial to use it before you read
this text. To run the Info tutorial, just type the 'h' key. You can do this at any time while you are in Info.

Preface
PART ONE: Working with Linux The first things you should know.

PART TWO: Files Working with files.

PART THREE: Text Words and writing.

PART FOUR: Images Graphic images.

PART FIVE: Sound Sound and audio.

PART SIX: Productivity Tools to increase productivity.
PART SEVEN: Networking Working with networks.

A. Administrative Issues Administrative issues.

B. Linux Resources on the Web Linux Resources on the World Wide Web.

C. License The copyright license for this book.
Program Index Index of program names.
Concept Index Index of recipes and general concepts.

The Linux Cookbook. Copyright (C) 2001 by Michael Stutz.

This information is free; it may be copied, distributed or modified under certain conditions, but comes
WITHOUT ANY WARRANTY; see the Design Science License for the precise terms and conditions.

The official author's edition is published by exclusive arrangement with No Starch Press, Inc.

The hardcopy author's edition is distributed to the book trade in the United States by Publishers Group Wes
1700 Fourth Street, Berkeley, California 94710, phone: 800-788-3123 or 510-528-1444, fax:
510-528-3444

The hardcopy author's edition is distributed to the book trade in Canada by Jacqueline Gross & Associates,
Inc., 195 Allstate Parkway, Markham, Ontario L3R 4T8 Canada, phone: 905-477-0722, fax: 905-477-861¢

For information on official translations or book distributors outside the United States, please contact No
Starch Press, Inc. directly:

No Starch Press, Inc. 555 De Haro Street, Suite 250, San Francisco, CA 94107 phone: 415-863-9900; fax:
415-863-9950; info@nostarch.com; www.nostarch.com

The Linux Cookbook: Tips and Techniques for Everyday Use 1

The Linux Cookbook: Tips and Techniques for Everyday Use:

Trademarked names are used throughout this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit o
the trademark owner, with no intention of infringement of the trademark.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

The Linux Cookbook: Tips and Techniques for Everyday Use 2

Preface

Because of its robust and stable nature, the Linux—based system is the choice of millions today. But what
some may not know is that the free software movement, of which Linux is a part, is very much a
counter—cultural phenomenon: the design by which it is produced and published is contrary to the notions of
proprietary, intellectual "property" that have dominated mainstream culture so long. While some
programmers turn their research into corporate—backed software that you cannot openly change, share, or
examine (but only purchase and run on your system), Linux and other free software is the product of many
individuals who courageously published and shared their research and work openly, for everyone to benefit
from.

| wrote this book because | want everyone to know how to use this software, because | think everyone
deserves the freedom that comes with it. | don't willingly use proprietary software——not because it is always
inferior to free software, but because its use precludes freedoms that | find | cannot exist without ... freedoms
that should be everyone's right by default in a free, open society. (See Introduction.)

| know that Linux isn't difficult to use, especially when compared with other software and operating systems,
but what was needed was a guide to show people how to use it to get things done: "Oh, you want to do that
Here, type this."

That explains the premise of the book—-it's a hands—on guide to getting things done on a Linux system,
designed for the everyday user who is not necessarily a computer programmer.

The traditional approach to the subject is to either provide laundry lists of all available commands and
applications, or focus on their use in a programming or otherwise technical environment. This book takes a
different approach, showing how everyday users——be they artists, designers, businessmen, scholars, or
scientists——can use these tools and applications to get things done. When | speak of "things," | mean
(hopefully) the kind of things that you——the sort of person possibly and partially described above——might
want to do with a modern computer system: view text and images, play and record sounds, perform
mathematic operations, print to your printer, format text, access the Internet, check your grammar, and so
forth.

Like a culinary cookbook, this book presents "recipes" for preparing or accomplishing a particular, specific
thing. I've selected what | consider to be the easiest and most effective methods for accomplishing particula
tasks, and have arranged these recipes in general sections according to subject matter——the first part of the
book is all about getting started, and contains the most essential information you need to know about using
Linux; the remaining chapters deal with general categories of usage: Files, Text, Images, Sound, Productivi
and Networking.

1.0 Format of Recipes Organization of recipes.
1.1 Assumptions, Scope, and Exclusions Assumptions, scope and exclusions.
1.2 Typographical Conventions Typographical conventions.

1.3 Versions. Latest Edition. and Errata Versions, latest edition and errata.

1.4 Acknowledgments The people who helped with this book.

Preface 3

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

1.0 Format of Recipes

Each recipe is numbered with at least two figures. These figures are constructed as follows: the first numbel
always corresponds to the chapter number, and the second to the section of the recipe. For example, Chapt
3 is The Shell, and Recipe No. 3.5 is the fifth recipe on slitisording a Shell Session.

Sometimes recipes are divided into subsections, with a third number specifying the specific recipe——for

example, Recipe No. 3.4 is on the subject of command history in the shell, and is divided further into
subsections; Recipe No. 3.4.2 is the second recipe on command [8gkecifying a Command from Your

History.

Each recipe describes a method for completing a specific task on the system; these tasks require at least or
software program. The software programs or files a recipe calls for are its ingredients.

The recipes are structured as follows:

1. Recipe number and title of the recipe.

2. Special ingredients, if any. The Debian package(s) and/or or URLs where the program(s) can be
obtained are listed, if they are available.

Debian classifies packages in varying level of importance, from ‘required' packages that all

systems must have in order to run, to "optional' and “extra’ packages that you only install if

you want them. If a described software package is in the first two given

categories——-"required' and ‘important'——-then | assume you have it installed, and the

package name isn't listed here.

In the rare case that a software package | describe is not yet available as a Debian package, | just gi
the URL where to obtain the source packages for that software; have your system administrator
install it.

3. Special preparation methods or description, if any. When a configurable program is described, the
standard setup as provided by the Debian distribution is assumed, unless otherwise specified here.

4. Description of the recipe and "cooking" method proper.
5. Remarks concerning the results and use.

6. Bulleted example of the method in a specific context.
7. Extra commands or actions you might want to do next.

8. Variations on the recipe, with additional examples.

Preface 4

The Linux Cookbook: Tips and Techniques for Everyday Use:

9. Special notes or references to further information.

Not all of these items may be present in a given recipe.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

1.1 Assumptions, Scope, and Exclusions

There a few assumptions that this book makes about you, the reader, and about your Linux system.

The Cookbook assumes that you have at least minimal understanding of your computer hardware——you dot
have to know how to take it apart or anything like that, but you ought to know how to operate the mouse,
where the power button is on your computer and monitor, how to load paper in your printer, and so forth. If
you need help with any of these tasks or concepts, ask your dealer or the party who set up your computer.

This book also assumes that you have Linux installed and properly set up, and that you have your own user
account set up on your system. If you need help with this, pleagfieYseeNeed More Help.

While this book can and should be used by the newcomer to Linux, I like to think that I've presented broad
enough coverage of the Linux—based system, and have included enough interesting or obscure material, so
that wizards, hackers, and members of the Linux Cabal may find some of it useful-—and that said users will
not feel ashamed to have a copy of this book on their desk or as part of their library.

Finally, a note about what isn't covered in the Cookbook.

This book describes only free software (sometimes called "open source" software) that runs on Linux
systemgl) Proprietary software is omitted, as are most software packages that are currently in a "beta" or
some other unstable release not yet intended for general use.

Some programs take a number of options that modify the way they work. Sometimes, various options that a
tool takes are listed in a table. These lists are not exhaustive; rather, they contain the most popular or usefu
options, or those options that are relevant to the discussion at hand. Consult the online manual page of a
particular tool for the complete listing (see sectk@ading a Page from the System Manual).

This is a user manual; no computer programming activities, such as program compilation, are discussed.
Topics related to system administration are also omitted——so you won't find anything in this text on matters
such as managing accounts, system maintenance, setting up hardware, and configuring networks.

As with any rule, you can find an exception to this——if you look hard enough for it. If you are running Linux
on your home computer as a single—user system, you are also the administrator of this system, and are the
responsible party for ensuring that any administrative tasks be compgldtedhistrative Issues exists as a
reference for those users who will be administrating their own systems.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

Preface 5

The Linux Cookbook: Tips and Techniques for Everyday Use:

1.2 Typographical Conventions
All recipes have at least one example that demonstrates it.

» The text that describes what the example does appears just before the example itself, and is offset
from the text with a bullet, like this.

A given recipe may have several variations; each is offset with its own bullet.

» The names of documents or users that are used in some recipes may not always reference actual
documents or users on your system, but demonstrate the general principles involved. So when | sho
how to print a file called “resume’, you might not necessarily have a file with that name on your
system, but you should understand the idea which the recipe demonstrates.

Sometimes, a terminal screen is shown to illustrate an interactive session:

$ Text that you actually type is displayed in a slanted font, like
this. If it is a command to be typed at a shell prompt, the command is
preceded with a “$' character.

Text that denotes program output is displayed in a monospaced Courier
font like this.

$

In examples where a shell prompt is displayed, the default current working directory is omitted in the prompt
and just a '$' is used; when a command outputs text and then exits, the last line of an example contains a
"$' character to denote the return to a shell prompt. Don't worry if this sounds strange to you now; all of this
"shell" business is explained Iihe Shell.

When a command exits and returns to the shell prompt without outputting text, the final shell prompt
character is omitted, and a cartouche border is not drawn around the example; this was purely an aesthetic
decision.

The names of files or directories appear in the text as “file'; commands appear as command, and strings
of text are typeset like "'some text'. GNU INFO BUG: Note that the differences in fonts and appearance
are mostly lost in the Info version.

Text you type is written like this, just as in the examples, and when a specific key on the keyboard is
mentioned, its conventional name is displayed in a box. For example, RET denotes the "Return' key on
the keyboard2)

In examples where keys are meant to be pressed and held down together, the keys are separated by hyphe
the hyphens are not meant to be literally pressed. For example, pressing the CTRL, ALT, and DEL keys anc
holding them down at the same time is a combination that has meaning in some operating systems (includir
Linux, where this keystroke means to shut down the system and reboot the computer); it is represented like
this:

Preface 6

The Linux Cookbook: Tips and Techniques for Everyday Use:

CTRL-ALT-DEL

The CTRL ("Control’) key is always used in combination with another key; these combinations are

denoted by C-x, where x is the second key. These combinations are read as “control-x', where x is the
name of the second key. To type one of these combinations, press and hold CTRL, press the second key, a
then release both keys.

* For example, to type C-d (pronounced "control d'), press and hold CTRL, type the D key, and
then release both keys.

In some applications (notably, the Emacs editor; see section Emacs), the META key is used with another ke
in the same way as SHIFT; these combinations are denoted by M—x, where x is the second key. Most
keyboards today don't have a META key, even though the term is still in use; instead, press and release ES
and then type the second key.

» To type M—c, press and release ESC, and then press and release the C key.

You can sometimes also use the ALT key for the META key. This often does not work in the X Window
System, but in the console you can press and hold ALT and then type the second key just as you would witt
CTRL key sequence.

* So to type M-c with the ALT key, press and hold ALT, press the C key, and then release both keys.

Both CTRL and META sequences are hot case—sensitive; that is, pressing X in the last example is the same
pressing x (although x is certainly easier to type). By convention, the C— or M- prefix is always given as an
uppercase letter, and the key which follows is always given as a lowercase letter.

Menu items in an application are written like Menu Item; the names of command functions are written as
Function.

For aesthetic purposes, a physical space appears in the text between commands and the final RET that enc
command line, and should not be literally typed (although nothing bad will happen should you actually type
this space). Where explicitly pressing the space bar is called for, that key is represented in examples by SP

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

1.3 Versions, Latest Edition, and Errata

@sf{WWW}: http://dsl.ora/cookbook/

The Linux Cookbook is available in both hardcopy and as a machine-readable file. The latest edition of this
book in etext ("electronic text") form is always available frondigsribution site on the World Wide Web.

This site includes the most up—to—date complete text (in both HTML and GNU Info formats), and provides a
method for purchasing the latest edition of the hardcopy book at a discount.

Preface 7

http://dsl.org/cookbook/
http://dsl.org/cookbook/
http://dsl.org/cookbook/

The Linux Cookbook: Tips and Techniques for Everyday Use:

Every effort has been made to include only the best free software recipes for accomplishing tasks in the
easiest and most efficient manner, and they are believed to be correct. Suggestions, comments, and bug
reports are always welcome; you can contact the author via email at stutz@dsl.org.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

1.4 Acknowledgments

This is not a book that was borne easily. Conception, took but an idle moment—-but once the idea had been
implanted, | found resistance and setbacks at every turn. It was only through the help of the following
individuals that this book with my name on its cover was finally brought forth, and has now found its way to
you.

Everyone involved with this book Ao Starch Press deserves a hearty round of thanks. Bill Pollock has
published this book precisely according to its author's vision, and had the discernment and foresight to allow
that a copylefted edition (with corresponding source data) be made available in conjunction with the
hardcopy book. Project manager Karol Jurado worked ceaselessly to keep the production flowing, while
dealing with my input files, and giving opinion and advice on all manners of obtuse esoterica whenever the
sudden need to know came over me. Both Elisabeth Beller and Andy Carroll contributed improvements to tr
text.

Steve Turner and thidational Writers Union played a major role in helping to ensure that this book could be
completed, copylefted, and in the hands of Linux users like yourself. Carol Cricow gave invaluable legal
assistance, and various advice and assistance came from the NWU's JoAnn Kawell, Philip Mattera, Judy
Heim, and Bonnie Britt.

Wendy Seltzer, FellowLhe Berkman Center for Internet & Society at Harvard Law School assisted with the

conception of the Design Science License (DSL), which is used in this book. She gave an initial review of th
license draft and provided her expertise and advice throughout the entire process.

Thanks to David Sims, Chris Coleman, and Terrie Schweitzer, who've all been great folks to work with at the
O'Reilly Network, where my "Living Linux" column runs.

| am indebted to Buwei Yang Chao, whose How To Cook and Eat In Chinese (John Day Company, 1945)
served as much of the inspiration behind the tone and structure of this book. | feel the same regard for two
other authors who have come before me, and whose work has had a direct influence in the writing of this
book—-Dr. Lee Su Jan (The Fine Art of Chinese Cooking, Gramercy Publishing 1962) and Andrew Walker
(The UNIX Environment, Wiley 1984).

Thanks also go out to Kenneth W. Melvin, and to the members of the "Byline" forum on the WELL; both
were sources of advice and feedback early in the project. The art—hackerbraiithpailing

list entertained initial discussion of the idea of this book as it first occurred, and the "elders" Ann and Walt
gave various support for which | am grateful.

Finally, | must thank Jack Angelotta, Jon Konrath, Steven Snedker, and mrs (Marie Stutz), who all listened
to the unbelievable as it happened, and stood by——even in moments of terror.

Preface 8

mailto:stutz@dsl.org
http://www.nostarch.com/
http://www.nostarch.com/
http://www.nostarch.com/
http://www.nwu.org/
http://www.nwu.org/
http://www.nwu.org/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://cyber.law.harvard.edu/
http://oreillynet.com/
http://oreillynet.com/
http://linart.net/
http://linart.net/
http://linart.net/

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

Preface 9

PART ONE: Working with Linux

2. Introduction Introduction to the book.

3. What Every Linux User Knows The first commands to learn.

4. The Shell All about using the bash shell.

5. The X Window System An introduction to the X Window System.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

PART ONE: Working with Linux 10

2. Introduction

Before we get into "cooking" and the recipes proper, this first part of the book deals with preliminaries,
explaining the general techniques and methods for working with Linux—-including how to get the system
ready for use, and how to run commands on the system.

The rest of the book is all recipes, which are sorted in sections by the tasks they perform or the objects they
work on——such as text, files, images, and so forth.

2.1 Background and History Background history.
2.2 What to Try First What to try first.

2.3 If You Need More Help If you need more help ...

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

2.1 Background and History

In order to understand what Linux is all about, it helps to know a bit about how it all began. So the following
is a historical overview, giving a concise background of the software that is the subject of this book.

2.1.1 What's Unix?

2.1.2 What's Free Software?

2.1.3 What's Open Source?

2.1.4 What's Linux?

2.1.5 What's Debian?

2.1.6 Unix and the Tools Philosophy Unix and the tools philosophy.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

2.1.1 What's Unix?

@sf{WWW}: http://www.bell-labs.com/history/unix/
@sf{WWW}: http://internet—history.ora/archives/early.history.of.unix.html

Unix, the original ancestor of Linux, is an operating system. Or at least it was an operating system; the
original system known as Unix proper is not the "Unix" we know and use today; there are now many

2. Introduction 11

http://www.bell-labs.com/history/unix/
http://internet-history.org/archives/early.history.of.unix.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

"flavors" of Unix, of which Linux has become the most popular.

A product of the 1960s, Unix and its related software was invented by Dennis Ritchie, Ken Thompson, Briar
Kernighan, and other hackers at Bell Labs in 1969; its name was a play on "Multics," another operating
system of the tim€3)

In the early days of Unix, any interested party who had the hardware to run it on could get a tape of the
software from Bell Labs, with printed manuals, for a very nominal charge. (This was before the era of
personal computing, and in practice, mostly only universities and research laboratories did this). Local sites
played with the software's source code, extending and customizing the system to their needs and liking.

Beginning in the late 1970s, computer scientists at the University of California, Berkeley, a licensee of the
Unix source code, had been making their own improvements and enhancements to the Unix source during t
course of their research, which included the development of TCP/IP networking. Their work became known
as the BSD ("Berkeley Systems Distribution") flavor of Unix.

The source code of their work was made publicly available under licensing that permitted redistribution, with
source or without, provided that Berkeley was credited for their portions of the code. There are many moder
variants of the original BSD still actively developed today, and some of them—--such as NetBSD and
OpenBSD--can run on personal computers.

NOTE: The uppercase word "UNIX' became a trademark of AT&T (since transferred to other
organizations), to mean their particular operating system. But today, when people say "Unix," they usually
mean "a Unix-like operating system," a generalization that includes Linux.

If you'd like further information on this topic, you might be interested in consulting A Quarter Century of
UNIX by Peter H. Salus (Addison—-Wesley 1994), which has become the standard text on the subject.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

2.1.2 What's Free Software?

@sf{WWW}: http://www.gnu.org/philosophy/free—sw.html

Over the years, Unix's popularity grew. After the divestiture of AT&T, the tapes of the source code that Bell
Labs provided became a proprietary, commercial product: AT&T UNIX. But it was expensive, and didn't
come with the source code that made it tick. Even if you paid extra for a copy of the sources, you couldn't
share with your programmer colleagues any improvements or discoveries you made.

By the early 1980s, proprietary software development, by only—for—profit corporations, was quickly
becoming the norm——even at universities. More software was being distributed without source code than
ever before.

In 1984, while at the Massachusetts Institute of Technology in Cambridge, Massachusetts, hacker Richard
Stallman saw his colleagues gradually accept and move to this proprietary development model. He did not
accept the kind of world such proprietism would offer: no sharing your findings with your fellow man, no
freedom for anyone to take a look "under the hood" of a published work to see how it worked so that one
could understand it or build upon it; it would mean no freedom to improve your copy of such works, or do

2. Introduction 12

http://www.gnu.org/philosophy/free-sw.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

what you please with your copy——including share it with others.

So instead of giving in to the world of non—free computing, Stallman decided to start a project to build and
assemble a new Unix-like operating system from scratch, and make its source code free for anyone to copy
and modify. This was the GNU Project ("GNU's Not Unifd).

The GNU Project's software would be licensed in such a way so that everyone was given the freedom to
copy, distribute, and modify their copy of the software; as a result, this kind of software became known as
free software.

Individuals and businesses may charge for free software, but anyone is free to share copies with their
neighbors, change it, or look at its source code to see how it works. There are no secrets in free software; it
software that gives all of its users the freedom they deserve.

Proprietary software strictly limits these freedoms——in accordance with copyright law, which was formulated
in an age when works were normally set and manipulated in physical form, and not as hon—physical data,
which is what computers copy and modify.

Free software licensing was developed as a way to work around the failings of copyright law, by permitting
anyone to copy and modify a work, though under certain strict terms and conditions. The GNU Project's
GNU General Public License, or GNU GPL, is the most widely used of all free software licenses. Popularly
called a "copyleft," it permits anyone to copy or modify any software released under its terms——provided all
derivatives or modifications are released under the same terms, and all changes are documented.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

2.1.3 What's Open Source?

@sf{WWW}: http://www.opensource.org/
@sf{WWW}: http://www.gnu.ora/philosophy/free—software—for—freedom.html

The term open source was first introduced by some free software hackers in 1998 to be a marketing term fc
"free software." They felt that some people unfamiliar with the free software movement—-—namely, large
corporations, who'd suddenly taken an interest in the more than ten years' worth of work that had been put
into it——might be scared by the word "free."” They were concerned that decision—makers in these corporatior
might confuse free software with things like freeware, which is software provided free of charge, and in
executable form only. (Free software means nothing of the sort, of course; the "free" in "free software" has
always referred to freedom, not price.)

The Open Source Initiative (OSI) was founded to promote software that conforms with their public "Open
Source Definition,” which was derived from the "Debian Free Software Guidelines" (DFSG), originally
written by Bruce Perens as a set of software inclusion guidelines for Debian. All free software——including
software released under the terms of the GNU General Public License——conforms with this definition.

But some free software advocates and organizations, including the GNU Project, do not endorse the term
"open source" at all, believing that it obscures the importance of "freedom" in this moygment.

Whether you call it free software, open source software, or something else, there is one fundamental

2. Introduction 13

http://www.gnu.org/copyleft/gpl.txt
http://www.gnu.org/copyleft/gpl.txt
http://www.gnu.org/copyleft/gpl.txt
http://www.gnu.org/copyleft/gpl.txt
http://www.opensource.org/
http://www.gnu.org/philosophy/free-software-for-freedom.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

difference between this kind of software and proprietary, non—free software——and that is that free software
always ensures that everyone is granted certain fundamental freedoms with respect to that software.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

2.1.4 What's Linux?

In the early 1990s, Finnish computer science student Linus Torvalds began hacking on Minix, a small,
Unix-like operating system for personal computers then used in college operating systemg@oldeses.
decided to improve the main software component underlying Minix, called the kernel, by writing his own.
(The kernel is the central component of any Unix-like operating system.)

In late 1991, Torvalds published the first version of this kernel on the Internet, calling it "Linux" (a play on
both Minix and his own namgJ.)

When Torvalds published Linux, he used the copyleft software license published by the GNU Project, the
GNU General Public License. Doing so made his software free to use, copy, and modify by
anyone—-provided any copies or variations were kept equally free. Torvalds also invited contributions by
other programmers, and these contributions came; slowly at first but, as the Internet grew, thousands of
hackers and programmers from around the globe contributed to his free software project. The Linux softwar
was immensely extended and improved so that the Linux—based system of today is a complete, modern
operating system, which can be used by programmers and non—-programmers alike; hence this book.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

2.1.5 What's Debian?

@sf{WWW}: http://debian.org/

It takes more than individual software programs to make something that we can use on our
computers——someone has to put it all together. It takes time to assemble the pieces into a cohesive, usable
collection, and test it all, and then keep up to date with the new developments of each piece of software (a
small change in any one of which may introduce a new software dependency problem or conflict with the
rest). A Linux distribution is such an assemblage. You can do it yourself, of course, and "roll your own"
distribution—-since it's all free software, anyone can add to it or remove from it and call the resulting
concoction their own. Most people, however, choose to leave the distribution business to the experts.

For the purposes of this book, | will assume that you are using the Debian GNU/Linux distribution, which, of
all the major distributions, is the only one designed and assembled in the same manner that the Linux kerne
and most other free software is written——by individuals.

And when | say "Linux" anywhere in this book (including in the title), unless noted, | am not referring to the

bare kernel itself, but to the entire working free software system as a whole. Some people call this
"GNU/Linux."(8)

2. Introduction 14

http://debian.org/

The Linux Cookbook: Tips and Techniques for Everyday Use:

There are many other distributions, and some of them are quite acceptable-—many users swear by Red Hat
Linux, for example, which is certainly popular, and reportedly easy to install. The SUSE distribution is very
well-received in Europe. So when people speak of Debian, Red Hat, SUSE, and the like in terms of Linux,
they're talking about the specific distribution of Linux and related software, as assembled and repackaged b
these companies or organizations (see settimx Resources on the Web). The core of the distributions are
the same—-they're all the Linux kernel, the GNU Project software, and various other free software——but eac
distribution has its own packaging schemes, defaults, and configuration methods. It is by no means wrong t
install and use any of these other distributions, and every recipe in this book should work with all of them
(with the exception of variations that are specific to Debian systems, and are labelled as such in the text).

In Debian's early days, it was referred to as the "hacker's distro," because it could be very difficult for a
newbie to install and manage. However, that has changed—-any Linux newbie can install and use today's
Debian painlessly.

NOTE: | recommend Debian because it is non—corporate, openly developed, robust (the standard Debian
CD-ROM set comes with more than 2,500 different software packages!), and it is entirely committed to free
software by design (yes, there are distributions which are not).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

2.1.6 Unix and the Tools Philosophy

@sf{WWW}: http://cm.bell-labs.com/cm/cs/upe/
@sf{WWW}: http://www.cs.bell-labs.com/cm/cs/pearls/
To understand the way tasks are performed on Linux, some discussion on the philosophy behind the softw:

that Linux is built upon is in order. A dip in these inviting waters will help clarify the réle of this book as
"cookbook."

The fact that the Unix operating system has survived for more than thirty years should tell us something
about the temerity of its design considerations. One of these considerations——perhaps its most endearing—-
the "tools" philosophy.

Most operating systems are designed with a concept of files, come with a set of utility programs for handling
these files, and then leave it to the large applications to do the interesting work: a word processor, a
spreadsheet, a presentation designer, a Web browser. (When a few of these applications recognize each
other's file formats, or share a common interface, the group of applications is called a "suite.")

Each of these monolithic applications presumably has an "open file" command to read a file from disk and
open it in the application; most of them, too, come with commands for searching and replacing text, checkin
spelling, printing the current document, and so on. The program source code for handling all of these tasks
must be accounted for separately, inside each application——taking up extra space both in memory and on
disk. This is the anti-Unix approach.

And in the case of proprietary software, all of the actual program source code is kept from the public——so
other programmers can't use, build on, or learn from any of it. This kind of closed—source software is
presented to the world as a kind of magic trick: if you buy a copy of the program, you may use it, but you cau
never learn how the program actually works.

2. Introduction 15

http://cm.bell-labs.com/cm/cs/upe/
http://www.cs.bell-labs.com/cm/cs/pearls/

The Linux Cookbook: Tips and Techniques for Everyday Use:

The result of this is that the code to handle essentially the same function inside all of these different
applications must be developed by programmers from scratch, separately and independently of the others
each time—-so the progress of society as a whole is set back by the countless man—hours of time and ener
programmers must waste by inefficiently reinventing all the same software functions to perform the same
tasks, over and over again.

Unix-like operating systems don't put so much weight on application programs. Instead, they come with
many small programs called tools. Each tool is generally capable of performing a very simple, specific task,
and performing it well-—one tool does nothing but output the file(s) or data passed to it, one tool spools its
input to the print queue, one tool sorts the lines of its input, and so on.

An important early development in Unix was the invention of "pipes," a way to pass the output of one tool to
the input of another. By knowing what the individual tools do and how they are combined, a user could now
build powerful "strings" of commands.

Just as the tensile strength of steel is greater than the added strength of its components——nickel, cadmium,
and iron——multiple tools could then be combined to perform a task unpredicted by the function of the
individual tools. This is the concept of synergpd it forms the basis of the Unix tools philosoffy.

Here's an example, using two tools. The first tool, called who, outputs a list of users currently logged on to
the system (see sectitisting Who Is on the System). The second tool is called wc, which stands for "word
count”; it outputs a count of the number of words (or lines or characters) of the input you give it (see section

Counting Text).

By combining these two tools, giving the wc command the output of who, you can build a new command to
list the number of users currently on the system:

$ who | we -I RET
4
$

The output of who is piped—-via a "pipeline," specified by the vertical bar ('|') character—-to the input of
wc, which through use of the "—I' option outputs the number of lines of its input.

In this example, the number 4 is shown, indicating that four users are currently logged on the system.
(Incidentally, piping the output of who to wc in this fashion is a classic tools example, and was called "the
most quoted pipe in the world" by Andrew Walker in The UNIX Environment, a book that was published in
1984))

Another famous pipeline from the days before spell-check tools goes something like this:

$tr —cs A-Za-z "\012' | tr A-Z a-z | sort —u |
comm —23 - /usr/dict/words RET

This command (typed all on one line) uses the tr, sort, and comm tools to make a spelling checker——after
you type this command, the lines of text you type (until you interrupt it) are converted to a single—column list
of lowercase words with two calls of tr, sorted in alphabetical order while ferreting out all duplicates, the
resultant list which is then compared with “/usr/dict/words', which is the system "dictionary," a list

of properly—spelled words kept in alphabetical order (see section Spelling).

2. Introduction 16

The Linux Cookbook: Tips and Techniques for Everyday Use:

Collective sets of tools designed around a certain kind of field or concept were called "workbenches" on olde
Unix systems; for example, the tools for checking the spelling, writing style and grammar of their text input
were part of the "Writer's Workbench" package (see se@limtking Grammar).

Today the GNU Project publishes collections of tools under certain general themes, such as the "GNU text
utilities" and "GNU file utilities," but the idea of "workbenches" is generally not part of the idiom of today's
Unix—based systems. Needless to say, we still use all kinds of tools for all kinds of purposes; the great bulk
this book details various combinations of tools to obtain the desired results for various common tasks.

You'll find that there's usually one tool or command sequence that works perfectly for a given task, but
sometimes a satisfactory or even identical result can be had by different combinations of different
tools——especially at the hands of a Unix expert. (Traditionally, such an expert was called a wizard.)

Some tasks require more than one tool or command sequence. And yes, there are tasks that require more t
what these simple craft or hand tools can provide. Some tasks need more industrial production techniques,
which are currently provided for by the application programs. So we still haven't avoided applications
entirely; at the turn of the millennium, Linux—based systems still have them, from editors to browsers. But
our applications use open file formats, and we can use all of our tools on these data files.

The invention of new tools has been on the rise along with the increased popularity of Linux—based systems
At the time of this writing, there were a total of 1,190 tools in the two primary tool directories (*/bin' and
“fusr/bin’) on my Linux system. These tools, combined with necessary applications, make free, open

source software——for perhaps the first time in its history——a complete, robust system for general use.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

2.2 What to Try First

The first four chapters of this book contain all of the introductory matter you need to begin working with
Linux. These are the basics.

Beginning Linux users should start with the concepts described in these first chapters. Once you've learned
how to start power to the system and log in, you should look over the chapter on the shell, so that you are
familiar with typing at the command prompt, and then read the chapter on the graphical windows interface
called the X Window System, so that you can start X and run programs from there if you like.

If you are a Linux beginner and are anxious to get up to speed, you might want to skip ahead and read the
chapter on files and directories next, to get a sense of what the system looks like and how to maneuver
through it. Then, go on to learning how to view text, and how to edit it in an editor (respectively described in
the chapters on viewing text and text editing). After this, explore the rest of the book as your needs and
interests dictate.

So, to recapitulate, here is what | consider to be the essential material to absorb for familiarizing yourself
with the basic usage of a Linux system:
1. Introduction (this current chapter).

2. Introduction 17

The Linux Cookbook: Tips and Techniques for Everyday Use:

2. What Every Linux User Knows.
3. The Shell (ignoring the section on customization for now).
4. The X Window System (ignoring the section on configuration for now).
5. Eiles and Directories.
6. Viewing Text(mostly the first sectiorRerusing Text).
7. Text Editing (enough to select a text editor and begin using it).
If you have a question about a tool or application in particular, look it up in the program index (see section

Program Index). The index proper, listing recipe names and the general concepts involved, is called the
conceptindex (see sectioBoncept Index).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

2.3 If You Need More Help

If you need more help than this book can give, remember that you do have other options. Try these steps fo
getting help:

« Chances are good that you are not alone in your question, and that someone else has asked it befor
therefore, the compendiums of "Frequently Asked Questions" just might have the answer you need:

the Debian FAQand theLinux FAQ.

» TheLinux Documentation Project is the center of the most complete and up—-to—date Linux-related
documentation available; see if there is a document related to the topic you need help with.

» The Usenet newsgroups news:comp.os.linux.arthnews:linux.debian.user are often an excellent
place to discuss issues with other Linux users. (Usenet is descriRedding Usenet).

» Check http://linux.com/lug/ to find the Linux User Group ("LUG") nearest you——people involved
with LUGs can be great sources of hands—on help, and it can be fun and rewarding to get involved
with other Linux and free software enthusiasts in your local area.

« Finally, you can hire a consultant. This may be a good option if you need work done right away and
are willing to pay for it.

The Linux Consultants HOWTO is a list of consultants around the world who provide various support
services for Linux and open source software in general (see sBetialing System Documentation

and Help Files). Consultants have various interests and areas of expertise, and they are listed in tha
document with contact information.

2. Introduction 18

http://www.debian.org/doc/FAQ/
http://www.debian.org/doc/FAQ/
http://mainmatter.com/
http://mainmatter.com/
http://linuxdoc.org/
http://linuxdoc.org/
http://linuxdoc.org/
news:comp.os.linux.help
news:linux.debian.user
http://linux.com/lug/

[<] [=] [=<] [Up] [>>]

2. Introduction

The Linux Cookbook: Tips and Techniques for Everyday Use:

[Top] [Contents] [Index] [2]

19

3. What Every Linux User Knows

This chapter concerns those concepts and commands that every Linux user knows——how to start and stop 1
system, log in and out from it, change your password, see what is happening on the system, and use the
system help facilities. Mastery of these basic concepts is essential for using Linux with any degree of succe:

Some of these recipes make reference to files and directories; these concepts are expifasezhih
Directories.

3.1 Controlling Power to the System How to start and stop the system.

3.2 Accounts and Privileges Using your account to access the system.
3.3 Console Basics The basics of the Linux console.
3.4 Running a Command Commands and how to run them.
3.5 Changing Your Password How to change your password.
3.6 Listing User Activity Looking at the system's users.
3.7 Listing System Activity Looking at system processes.
3.8 Help Facilities System help facilities.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.1 Controlling Power to the System

These recipes show how to start and stop power to the system-—how to turn it on and turn it off. It's more
than just pressing the button on the case; in particular, there is a right way to turn off the system, and doing
wrong can result in losing some of your work. Fortunately, there isn't any black magic involved, as we soon
shall see——properly shutting down the system is easy!

3.1.1 Powering Up the System Booting up the system.
3.1.2 Turning Off the System Turning off the system.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3. What Every Linux User Knows 20

The Linux Cookbook: Tips and Techniques for Everyday Use:
3.1.1 Powering Up the System

The first thing you do to begin using the system is start power to it. To power up the system, just turn it on.
This is called booting the system.

As the Linux kernel boots there will be many messages on the screen. After a while, the system will display
login: prompt. You can now log in. See sectlauging In to the System.

Some systems are configured to start »atrboot time (see secti@tarting X). If your system is configured
like this, instead of the login: prompt described above, you'll see a graphical screen with a box in the
middle containing both login: and Password: prompts. Type CTRL-ALT-F1 to switch to the first
virtual console, where you can log in to the system in the usual way (see Semigmie Basics).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.1.2 Turning Off the System

You can't just flip the power switch when you are done using the computer, because Linux is constantly
writing data to disk. (It also keeps data in memory, even when it may have appeared to have written that dat
to disk.) Simply turning off the power could result in the loss or corruption of some of your work.

The following describes a method of turning off the system that can be done by a normal user; the traditiona
way of shutting down can only be performed by the superuser, and is desc@tedting Down the System.

To turn off a single user system, first log out of all consoles (discussgghsole Basics). Then, type
CTRL-ALT-DEL(press and hold these three keys at ofid&).

The system will print some messages as it shuts down, and when you see the line, 'Rebooting...", it's
safe to turn the power to machine off.

NOTE: You don't want to wait too long after you see this message; if left untouched, the system will reboot
and you'll be back to the beginning!

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3.2 Accounts and Privileges

Linux is a multi—user system, meaning that many users can use one Linux system simultaneously, from
different terminals. So to avoid confusion (and to maintain a semblance of privacy), each user's workspace
must be kept separate from the others.

Even if a particular Linux system is a stand—alone personal computer with no other terminals physically

3. What Every Linux User Knows 21

The Linux Cookbook: Tips and Techniques for Everyday Use:

connected to it, it can be shared by different people at different times, making the separation of user
workspace still a valid issue.

This separation is accomplished by giving each individual user an account on the system. You need an
account in order to use the system; with an account you are issued an individual workspace to use, and a
unique username that identifies you to the system and to other users. It is the name that the system (and th
who use it) will then forever know you as; it's a single word, in all lowercase letters.

During the installation process, the system administrator should have created an account for you. (The systt
administrator has a special account whose username is root; this account has total access to the entire
system, so it is often called the superuser.)

Until the mid—1990s it was widely common for usernames to be the first letter of your first name followed by
your entire surname, up to 12 characters total. So for example, user Samuel Clemens would have a usernal
of sclemens by this convention; this, however, is not a hard and fast rule, especially on home systems
where you may be the only user. Sometimes, a middle initial may be used ("dkjohnson"), or sometimes
even nicknames or initials are used ("zenboy," "xibo"). But whatever username you pick for yourself,

make sure it's one you can live with, and one you can stand being called by both the system and other user:
(your username also becomes part of your email address, as we'll see in Email).

In addition to your username, you should also have a password that you can keep secret so that only you c:
use your account. Good passwords are strings of text that nobody else is likely to guess (i.e., not obvious
words like “secret’, or identifying names like "Ruski', if that happens to be your pet cat). A good

password is one that is highly memorable to you so that you don't have to write it down, but is complex
enough in construction so that anyone else couldn't ever guess it. For example, "t39sAH' might be a fine
password for someone whose first date was to see the movie The 39 Steps directed by Alfred Hitchcock.

NOTE: While usernames are always in lowercase, passwords are case sensitive; the passwords “Secret',
“secret’, and "'SECRET" are all considered different.

3.2.1 Logging In to the System How to log in to the system.
3.2.2 L ogging Out of the System How to log out of the system.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.2.1 Logging In to the System

To begin a session on a Linux system, you need to log in. Do this by entering your username at the
login: prompt on your terminal, and then entering your password when asked.

The login: prompt appears on the terminal after the system boots. If your system is configured to start the
X Window System at boot time, you'll be presented with an X login screen instead of the standard login
prompt. If that happens, press CTRL-ALT-F1 to switch to the text login screen; this is explained further in
Console Basics.

3. What Every Linux User Knows 22

The Linux Cookbook: Tips and Techniques for Everyday Use:

A typical login: prompt looks like this:

Debian GNU/Linux 2.2 bardo ttyl

bardo login:

Every Linux system has its own name, called the system's hostname; a Linux system is sometimes called a
host, and it identifies itself with its hosthame at the login: prompt. It's important to name your

system—-like a username for a user account, a hostname gives name to the system you are using (and it
becomes especially important when putting the system on a network). The system administrator usually
names the system when it is being initially configured (the hostname can always be changed later; its name
kept in the file “/etc/hostname'). Like usernames, hostnames are one word in all lowercase letters.

People usually give their system a hame they like, such as darkstar or shiva.

In this example, "bardo' is the hostname of this particular Linux system.

The name of the terminal you are connecting from is displayed just after the hostname. In this example, the
terminal is “ttyl', which means that this is the first terminal on this particular system. (Incidentally,

“tty' is short for "teletype," which historically was the kind of terminal hardware that most Unix—based
systems used by default.)

To log in to the system, type your username (followed by RET) at the login: prompt, and then type your
password when asked (also followed by RET); for security purposes, your password is not displayed on the
screen when you type it.

* To log in to the system with a username of "kurt' and a password of "'empathy’, type:

Debian GNU/Linux 2.2 bardo ttyl

bardo login: kurt RET
Password: empathy RET
Linux bardo 2.0.30 #1 Tue Jul 29 10:01:26 EDT 1997 i586 unknown

Copyright (C) 1993-1998 Software in the Public Interest, and others

Most of the programs included with the Debian Linux system are
freely redistributable; the exact distribution terms for each
program are described in the individual files in
/usr/doc/*/copyright

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Tue Apr 5 12:03:47 on ttyl.

No mail.

~$

Once you've entered your username and password, you are "logged in" to the system. You can then use the
system and run commands.

As soon as you log in, the system displays the contents of “/etc/motd’, the "Message of the Day" file.
The system then displays the time and date of your last login, and reports whether or not you have electroni

3. What Every Linux User Knows 23

The Linux Cookbook: Tips and Techniques for Everyday Use:

mail waiting for you (see sectign Email). Finally, the system puts you in a shell-—-the environment in which
you interact with the system and give it commands. Use of the default shell on most Linux systems, bash, is
discussed iThe Shell.

The dollar sign ('$') displayed to the left of the cursor is called the shell prompt; it means that the system is
ready and waiting for input. (You can change this prompt to any text of your liking; to learn how, see section
Changing the Shell Prompt.) By default, the shell prompt includes the name of the current directory, which it
places to the left of the "$' character. The tilde character ("~'), is a shell symbol that denotes the user's
home directory——when you log in, you are in your home directory (these terms are dekiled amd

Directories).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.2.2 Logging Out of the System

To end your session on the system, type logout at the shell prompt. This command logs you out of the
system, and a new login: prompt appears on your terminal.

* To log out of the system, type:

$ logout RET

Debian GNU/Linux 2.2 bardo ttyl

bardo login:

What works equally well to typing the logout command is to just type C—d (hold down CTRL and press D).
You don't even have to type RET afterwards. Many users prefer this quick shortcut.

Logging out of the system frees the terminal you were using——and ensures that nobody can access your
account from this terminal.

If you are the only person using your system and have just ended a session by logging out, you might want
power down the system. See secflamning Off the System, earlier in this chapter.

(<] [>] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.3 Console Basics

A Linux terminal is a place to put input and get output from the system, and usually has at least a keyboard
and monitor.

3. What Every Linux User Knows 24

The Linux Cookbook: Tips and Techniques for Everyday Use:

When you access a Linux system by the keyboard and monitor that are directly connected to it, you are saic
to be using the console terminal. (Linux systems can be accessed in other ways, such as through a network
via another terminal connected to a serial line; see section Communications).

Linux systems feature virtual consoles, which act as separate console displays that can run separate login
sessions, but are accessed from the same physical console terminal. Linux systems are configured to have
seven virtual consoles by default. When you are at the console terminal, you can switch between virtual
consoles at any time, and you can log in and use the system from several virtual consoles at once.

The following recipes explain the basic things you will need to do with virtual consoles.

3.3.1 Switching between Consoles Switching between consoles.
3.3.2 Scrolling the Console Text Scrolling the text on the screen.
3.3.3 Keys for Console Manipulation Keystrokes for manipulating the console.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.3.1 Switching between Consoles
To switch to a different virtual console, press ALT-Fn, where n is the number of the console to switch to.

* To switch to the fourth virtual console, press ALT-F4.

This command switches to the fourth virtual console, denoted by “tty4":

Debian GNU/Linux 2.2 bardo tty4

bardo login:

You can also cycle through the different virtual consoles with the left and right arrow keys. To switch to the
next-lowest virtual console (or wrap around to the highest virtual console, if you're at the first virtual
console), press ALT-@Ileftarrow. To switch to the next—highest virtual console, press

ALT-@rightarrow. [GNU INFO BUG: any <> in the preceding line should be the one of the cursor arrow
keys.]

* To switch from the fourth to the third virtual console, press:

ALT-@leftarrow
[GNU INFO BUG: any 60;62; in the preceding line should be the one of the cursor arrow keys.]

This keystroke switches to the third virtual console, "tty3":

3. What Every Linux User Knows 25

The Linux Cookbook: Tips and Techniques for Everyday Use:

Debian GNU/Linux 2.2 bardo tty3

bardo login:

The seventh virtual console is reserved for the X Window System. If X is installed, this virtual terminal will
never show a login: prompt, but when you are using X, this is where your X session appears. If your
system is configured to start X immediately, this virtual console will show an X login screen.

You can switch to a virtual console from the X Window System using CTRL in conjunction with the usual
ALT and function keys. This is the only console manipulation keystroke that works in X.

* To switch from X to the first virtual console, press:

CTRL-ALT-F1

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.3.2 Scrolling the Console Text

When you are logged in at a virtual console, new lines of text appear at the bottom of the console screen,
while older lines of text scroll off the top of the screen.

» To view this older text, press SHIFT-PgUp to scroll back through it.

» Once you have scrolled back, press SHIFT-PgDn to scroll forward through the text toward the most
recent text displayed on the console.

The amount of text you can scroll back through depends on system memory.

NOTE: This technique is for scrolling through text displayed in your shell session (see 3éetiShell). It

does not work for scrolling through text in a tool or application in the console——in other words, you can't use
this technique to scroll through text that is displayed by a tool for perusing text files. To scroll through text in
an application, use its own facilities for scrolling, if it has any.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.3.3 Keys for Console Manipulation

Some keystrokes for manipulating the console display, including those for switching between virtual
consoles, are described below. It's a good idea to experiment with these commands until you are comfortab
with them, because knowing how to use virtual consoles is basic to using Linux.

3. What Every Linux User Knows 26

The Linux Cookbook: Tips and Techniques for Everyday Use:

KEYSTROKE DESCRIPTION

ALT-Fn Switch to virtual console n, where n is a number from 1 to 7 (the default maximum).
CTRL-ALT-Fn When in X, switch to virtual console n, where n is a number from 1 to 6.
ALT-@leftarrow Switch to the next—lowest virtual console. For example, typing this while in virtual

console 4 switches to virtual console 3. Pressing this keystroke in the lowest console
wraps around to the highest console. [GNU INFO BUG: any <> in the preceding
line should be the one of the cursor arrow keys.]

ALT-@rightarrow Switch to the next—highest virtual console. For example, typing this while in virtual
console 4 switches to virtual console 5. Pressing this keystroke in the highest
console wraps around to the lowest console. [GNU INFO BUG: any <> in the
preceding line should be the one of the cursor arrow keys.]

SHIFT-PgUp Scroll back one screen to view previously displayed text.
SHIFT-PgDn When viewing previously displayed text, scroll forward one screen.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.4 Running a Command

A tool is a software program that performs a certain function——usually a specialized, simple task. For
example, the hostname tool outputs the system's hostname, and the who tool outputs a listing of the users
who are currently logged in. An application is the name given to larger, usually interactive, programs for
completing broader kinds of tasks——such as programs for image editing or word processing.

A tool or application may take any number of options (sometimes called "flags"), which specify a change in
its default behavior. It may also take arguments, which specify a file or some other text to operate on.
Arguments are usually specified after any options.

A command is the name of a tool or application along with the options and arguments you want to use, if an
Since typing the name of a tool itself is often sufficient to accomplish a desired task, tools alone are often
called commands.

Commands are case sensitive; the names of tools and applications are usually in all lowercase letters.

To run (or "execute") a tool or application without giving any options or arguments, type its name at a shell
prompt followed by RET.

* To run the hostname tool, type:

$ hostname RET
bardo

$

The hostname of the system in the example is “bardo'.

3. What Every Linux User Knows 27

The Linux Cookbook: Tips and Techniques for Everyday Use:

Options always begin with a hyphen character, "', which is usually followed by one alphanumeric
character. To include an option in a command, follow the name of the tool or application with the option.
Always separate the tool name, each option, and each argument with a space character.

Long-style options (sometimes called "GNU-style" options) begin with two hyphen characters ("—-") and
are usually one English word.

For example, many tools have an option, "——-version', to output the version number of the tool. (Many
tools also have a "——help' option, which outputs a list of options the tool takes; see sddtting the

Usage of a Tool.)

» To output the version of the hostname tool, type:

$ hostname ——version RET
hostname 2.10
$

This command outputs the text "hostname 2.10', indicating that this is version 2.10 of the
hostname tool.

Sometimes, an option itself may may take an argument. For example, hostname has an option for
specifying a file name to use to read the hostname from, "—F'; it takes as an argument the name of the file
that hostname should read from.

* To run hostname and specify that the file "host.info' is the file to read from, type:

$ hostname —F host.info RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.5 Changing Your Password

To change your password, use the passwd tool. It prompts you for your current password and a new
password to replace it with. For security purposes, neither the old nor the new password is echoed to the
screen as you type it. To make sure that you type the new password correctly, passwd prompts you for your
new password twice. You must type it exactly the same way both times, or passwd will not change your
password.

» To change your password, type:

$ passwd RET
Changing password for kurt

3. What Every Linux User Knows 28

The Linux Cookbook: Tips and Techniques for Everyday Use:

Old password: your current password RET

Enter the new password (minimum of 5, maximum of 8 characters)
Please use a combination of upper and lower case letters and numbers.
New password: your new password RET

Re-enter new password: your new password RET

Password changed.

$

NOTE: Passwords can contain uppercase and lowercase letters, the digits 0 through 9, and punctuation
marks; they should be between five and eight characters long. See sectioints and Privileges, for
suggestions on choosing a good password.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.6 Listing User Activity

The recipes in this section describe some of the simple commands for finding out who you are currently
sharing the system with and what they are doing.

3.6.1 Listing Your Username Finding out who you are.

3.6.2 Listing Who Is on the System Listing who is on the system.
3.6.3 Listing Who Is on and What They're Listing who is on and what they're
Doing doing.

3.6.4 Listing the Last Times a User Logged In Listing when a user last logged on.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3.6.1 Listing Your Username

Use whoami to output the username of the user that is logged in at your terminal. This is not as inutile a
command as one might first think——if you're at a shared terminal, it's useful to determine whether or not it is
your account that you're messing in, and for those with multiple accounts on a system, it's useful to see whic
of them you're currently logged in with.

« To output your username, type:

$ whoami RET
kurt
$

3. What Every Linux User Knows 29

The Linux Cookbook: Tips and Techniques for Everyday Use:

In this example, the username of the user logged in at this terminal is “kurt'.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.6.2 Listing Who Is on the System

Use who to output a list of all the users currently logged in to the system. It outputs a minimum of three
columns, listing the username, terminal location, and time of login for all users on the system. A fourth
column is displayed if a user is using the X Window System; it lists the window location of the user's sessior
(see sectiomhe X Window System).

» To see who is currently logged in, type:

$ who RET

murky ttyl Oct 20 20:09
dave tty2 Oct21 14:37

kurt tty3 Oct21 15:04

kurt ttypl Oct 21 15:04 (:0.0)
$

The output in this example shows that the user murky is logged in on tty1 (the first virtual console on the
system), and has been on since 20:09 on 20 October. The user dave is logged in on tty2 (the second virtual
console), and has been on since 14:37 on 21 October. The user kurt is logged in twice——on tty3 (the third
virtual console), and ttyp1, which is an X session with a window location of *(:0.0)".

NOTE: This command is for listing the users on the local system; to list the users connected to a different
system on the network, or to see more detailed information that a user may have made public about himself
seeChecking Whether a User Is Online.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3.6.3 Listing Who Is on and What They're Doing

The w tool is similar to who, but it displays more detail. It outputs a header line that contains information
about the current system status, including the current time, the amount of time the system has been up and
running, and the number of users on the system. It then outputs a list of users currently logged in to the
system, giving eight columns of information for each. These columns include username, terminal location, X
session (if any), the time of login, the amount of time the user has been idle, and what command the user is
running. (It also gives two columns showing the amount of time the system's CPU has spent on all of the
user's current jobs ("JCPU") and foreground process ("PCPU"); processes are disdLisiad Bystem

Activity, and jobs irlManaging Jobs.)

3. What Every Linux User Knows 30

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To see who is currently logged in and what they are doing, type:

$wRET

5:27pm up 17:53, 4 users, load average: 0.12, 0.06, 0.01
USER TTY FROM LOGIN IDLE JCPU PCPU WHAT
murky ttyl Oct 20 20:09 17:22m 0.32s 0.32s -bash

dave tty2 14:37 13.00s 2:35 0.07s less foo
kurt tty3 15:04 1:00m 0.41s 0.09s startx
kurt ttypl :0.0 15:04 0:00s 21.65s 20.96s emacs
$

In this example, the command's output shows that the current system time is 5:27 p.m., the system has bee
up for 17 hours and 53 minutes, and there are four users currently logged in: murky is logged in at tty1,

has been idle for 17 hours and 22 minutes, and is at a bash shell prompt; dave is logged in at tty2, has
been idle for 13 seconds, and is using less to peruse a file called fofsee sectioRerusing Text); and

kurt is logged in at two terminals——-tty3 and ttypl, which is an X session. He ran the

startx command on tty3 to start his X session, and within his X session, he is currently using Emacs.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3.6.4 Listing the Last Times a User Logged In

Use last to find out who has recently used the system, which terminals they used, and when they logged in
and out.

» To output a list of recent system use, type:

$ last RET

To find out when a particular user last logged in to the system, give his username as an argument.

« To find out when user kurt last logged in, type:

$ last kurt RET

NOTE: The last tool gets its data from the system file “/var/log/wtmp'; the last line of output tells
how far this file goes back. Sometimes, the output will go back for several weeks or more.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3. What Every Linux User Knows 31

The Linux Cookbook: Tips and Techniques for Everyday Use:

3.7 Listing System Activity

When you run a command, you are starting a process on the system, which is a program that is currently
executing. Every process is given a unique number, called its process ID, or "PID."

Use ps to list processes on the system. Some of the information it can display about a process includes
process ID, name of command being run, username running the command, and how long the process has
been running. By default, ps outputs 5 columns: process ID, the name of the terminal from which the proces
was started, the current status of the process (including °S' for sleeping, meaning that it is on hold at the
moment, "R' meaning that it is running, and “Z' meaning that it is a zombie process, or a process that has
already died), the total amount of time the CPU has spent on the process since the process started, and finz
the name of the command being run.

The following recipes describe popular usage of ps.

3.7.1 Listing Your Current Processes Listing your processes.
3.7.2 Listing All of a User's Processes Listing someone else's processes.

3.7.3 Listing All Processes on the System Listing all of the processes on the system.
3.7.4 Listing Processes by Name or Number Listing processes by name or number.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3.7.1 Listing Your Current Processes

Type ps with no arguments to list the processes you have running in your current shell session.

* To list the processes in your current shell session, type:

$ ps RET
PID TTY STAT TIME COMMAND
193 1S 0:01-bash
204 1S 0:00 ps

$

In this example, ps shows that two processes are running: the bash and ps commands.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3. What Every Linux User Knows 32

The Linux Cookbook: Tips and Techniques for Everyday Use:
3.7.2 Listing All of a User's Processes

To list all the processes of a specific user, use ps and give the username to list as an argument to the
“—u' option. While you can't snoop on the actual activities of other users, you can list the commands they
are running at a given moment.

« To list all the processes that user hst has running on the system, type:

$ps -u hst RET

NOTE: This command is useful for listing all of your own processes, across all terminals and shell sessions;
give your own username as an argument.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3.7.3 Listing All Processes on the System

To list all processes by all users on the system, use the "aux' options.

* To list all of the processes and give their usernames, type:

$ ps aux RET

NOTE: There could be a lot of output——even single—user Linux systems typically have fifty or more
processes running at one time——so you may want to pipe the output of this command through less for
perusal (see sectig?erusing Text).

Additionally, use top to show a display of all processes on the system, sorted by their demand on the systen
resources. The display is continually updated with current process information; press Q to stop the display

and exit the program. This tool also displays the information about system runtime and memory that can be
output with the uptime and free commands.

» To display a continually updated display of the current system processes, type:

$top RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3. What Every Linux User Knows 33

The Linux Cookbook: Tips and Techniques for Everyday Use:

3.7.4 Listing Processes by Name or Number

To list processes whose output contains a name or other text to match, list all processes and pipe the outpu
grep. This is useful for when you want to see which users are running a particular program or command.

* To list all the processes whose commands contain reference to an “shin' directory in them, type:

$ ps aux | grep shin RET

« To list any processes whose process IDs contain a 13 in them, type:

$ ps aux | grep 13 RET

To list the process (if any) which corresponds to a process ID, give that PID as an argument to the
“—p' option.

* To list the process whose PID is 344, type:

$ ps -p 344 RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.8 Help Facilities

Linux systems come with a lot of help facilities, including complete manuals in etext form. In fact, the
foremost trouble with Linux documentation isn't that there is not enough of it, but that you have to sift
through the mounds of it, trying to find the precise information you're looking for!

| describe the help facilities in the following sections; their relative usefulness for the particular kind of
information you're looking for is noted.

If you find that you need more help, don't panic——other options are available. They're desdfilved in
Need More Help.

3.8.1 Finding the Right Tool for the Job Finding the right tool to use.
3.8.2 Listing a Description of a Program Getting a description of a tool.
3.8.3 Listing the Usage of a Tool Getting usage help for a tool.

3.8.4 Reading a Page from the System Manual The online manuals.

3. What Every Linux User Knows 34

The Linux Cookbook: Tips and Techniques for Everyday Use:

3.8.5 Using the GNU Info System The GNU hypertext Info system.
3.8.6 Reading System Documentation and Help Other documentation on the
Files system.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.8.1 Finding the Right Tool for the Job

When you know what a particular tool or application does, but you can't remember it's name, use apropos.
This tool takes a keyword as an argument, and it outputs a list of installed software whose one-line
descriptions contain that keyword. This is also useful for finding software on your system related to, say,
"audio" or "sound" or "sort" or some other such general concept.

» To output a list of programs that pertain to consoles, type:

$ apropos consoles RET

console (4) — console terminal and virtual consoles

gpm (1) — a cut and paste utility and mouse server for
virtual consoles

$

NOTE: The apropos tool only finds exact matches, so a search for the keyword “console' might not
list the programs that a search for the keyword “consoles' would yield, and vice versa.

Another way to find tools by keyword is to search the system manual pages (seeResmtiimig a Page from
the System Manual). To do this, use man and give the text to search for as an argument to the "—k' option.

This searches the short descriptions and manual page names for the given text, and outputs a list of those
tools that match in the same format as the apropos tool.

« To output a list of all tools whose pages in the system manual contain a reference to consoles, type:

$ man -k consoles RET

On Debian systems, yet another way to find installed software by keyword is to use dpkg, the Debian
package tool. Use the "—I' option to list all of the installed packages, which are each output on a line of
their own with their package name and a brief description.

You can output a list of packages that match a keyword by piping the output to grep. Use the "—i' option
with grep to match keywords regardless of case (grep discussed isearching Text).

Additionally, you can directly peruse the file “/var/lib/dpkg/available’; it lists all available
packages and gives a description of them.

3. What Every Linux User Knows 35

The Linux Cookbook: Tips and Techniques for Everyday Use:

* To list all of the packages on the system, type:

$ dpkg -I RET

« To list all of the packages whose hame or description contains the text "edit," regardless of case,
type:

$ dpkg -1 | grep i edit RET

» To peruse descriptions of the packages that are available, type:

$ less /var/lib/dpkg/available RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.8.2 Listing a Description of a Program

Use whatis to list a one-line description of a program. Give the name of the tool or application to list as an
argument.

* To get a description of the who tool, type:

$ whatis who RET

NOTE: The whatis tool gets its descriptions from the manual page of a given program; manual pages are
described later in this section,Reading a Page from the System Manual.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

3.8.3 Listing the Usage of a Tool

Many tools have a long-style option, *——help’, that outputs usage information about the tool, including
the options and arguments the tool takes.

« To list the possible options for whoami, type:

$ whoami ——help RET
Usage: whoami [OPTION]...

3. What Every Linux User Knows 36

The Linux Cookbook: Tips and Techniques for Everyday Use:

Print the user name associated with the current effective user id.
Same as id —un.

——help display this help and exit
—-version output version information and exit

Report bugs to sh-utils-bugs@gnu.ai.mit.edu
$

This command outputs some usage information about the whoami tool, including a short description and a
list of possible options.

NOTE: Not all tools take the "——help' option; some tools take a "—h' or *=?' option instead, which
performs the same function.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.8.4 Reading a Page from the System Manual

In the olden days, the hardcopy reference manual that came with most Unix systems also existed
electronically on the system itself; each software program that came with the system had its own manual
page (often called a "man page") that described it. This is still true on Linux—based systems today, except
they don't always come with a hardcopy manual.

Use the man tool to view a page in the system manual. As an argument to man, give the name of the progre
whose manual page you want to view (so to view the manual page for man, you would type man man).

» To view the manual page for w, type:

$ manw RET

This command displays the manual page for w:

3. What Every Linux User Knows 37

The Linux Cookbook: Tips and Techniques for Everyday Use:

W{L) Linux Programmer”s Manual W{1»

NAHE
w - Show who is logged on and what they are doing,

SYNOPSIS
w — [husf¥] [user]

DESCRIPTION
w displays information about the users currently on the
machine, and their processes, The header shows, in this
order, the current time, how long the system has been
running, how many users are currently logged on, and the
system load averages for the past 1, 5, and 15 minutes,

The following entries are displayed for each user: login
name, the tty name, the remote host, login time, idle
time, JCPU, PCPU, and the command line of their current
process,

The JCPU time is the time used by all processes attached
Manual page w{l) line 1

Use the up and down arrow keys to move through the text. Press Q to stop viewing the manual page and ex
man. Since man uses less to display the text, you can use any of the less keyboard commands to peruse
the manual page (see sectfegrusing Text).

Despite its name, a manual page does not always contain the complete documentation to a program, but it's
more like a quick reference. It usually gives a short description of the program, and lists the options and
arguments it takes; some manual pages also include an example or a list of related commands. (Sometimes
commands have very complete, extensive manual pages, but more often, their complete documentation is
found either in other help files that come with it or in its Info documentation; these are subjects of the
following two recipes.)

To prepare a mapage for printing, se@reparing a Man Page for Printing.

[=] [2] [=<] [Up] [>2] [Top] [Contents] [Index] [2]

3.8.5 Using the GNU Info System

The GNU Info System is an online hypertext reference system for documentation prepared in the Info forma
This documentation tends to be more complete than a typical man page, and often, the Info documentation
for a given software package will be an entire book or manual. All of the manuals published by the Free
Software Foundation are released in Info format; these manuals contain the same text (sans illustrations) as
the paper manuals that you can purchase directly from the Free Software Foundation.

There are different ways to peruse the Info documentation: you can use the standalone info tool, read Info

files in the Emacs editor (see section Emacs), or use one of the other tools designed for this purpose.
Additionally, tools exist for converting Info documentation to HTML that you can read in a Web browser

(see sectioBrowsing Files).

To read the Info manual for a tool or application with the info tool, give its name as an argument. With no

3. What Every Linux User Knows 38

The Linux Cookbook: Tips and Techniques for Everyday Use:

arguments, info opens your system's Top Info menu, which lists all of the available manuals that are
installed on the system.

» To view all of the Info manuals on the system, type:

$ info RET

This command starts info at the system's Top menu, which shows some of the info key commands and
displays a list of available manuals:

file: dir, Mode: Top, This is the top of the INFD tree

This {the Directory node} gives a menu of major topics,
Typing "q" exits, "?" lists all Info commands, "d" returns here,
"h" gives a primer for first-timers,

"mEmacs<{Return>" visits the Emacs manual, etc,

In Emacs, you can click mouse button 2 on a menu item or cross reference
to select it,

¥ Menus

Texinfo documentation system

¥ Info: {infol, Documentation browsing system,

¥ Texinfo: (texinfol, The GNU documentation format,

¥ install-info: {(texinfol)Invoking install-info, Updating info/dir entries,

¥ texi2dvi: {texinfo)Format with texiZdvi, Printing Texinfo documentation,
¥ texindex: {(texinfo)Format with tex/texindex, Sorting Texinfo index files,

¥ makeinfo: {texinfo)makeinfo Preferred, Translate Texinfo source,

—-——-Info: {(dir}Top, 211 lines --Top
Welcome to Info version 2,18, "C-h" for help, "m" for menu item,

Use the arrow keys to move through each "page" of information, called an Info node. Nodes are the base ur
of information in Info, and are arranged hierarchically-—a manual's Top node will contain an Info

menu containing links to its various chapters, and a chapter node will contain a menu with links for its
sections, and so on. Links also appear as cross references in the text.

Links look the same in both menu items and cross references: an asterisk (**'), the name of the node it links
to, and either one or two colon characters (":"). To follow a link to the node it points to, move the cursor
over any part of the node name in the link and press RET.

To run a tutorial that describes how to use info, press the H key. Press Q at any time to stop reading the
documentation and exit info.

To read Info documentation for a tool or application, give its name as an argument to info; if no Info
manual exists for that tool, info displays the man page for that tool instead.
* To read the Info documentation for the tar tool, type:

$ info tar RET

3. What Every Linux User Knows 39

The Linux Cookbook: Tips and Techniques for Everyday Use:

This command opens a copy of The GNU tar Manual in info.
To read the contents of a file written in Info format, give the name of the file to read with the "—f' option.
This is useful for reading an Info file that you have obtained elsewhere, and is not in the

“Jusr/info’ directory with the rest of the installed Info files. Info can automatically recognize and
expand Info files that are compressed and have a ".di#é name extension (see sectidompressed Files).

» To read “faqg.info', an Info file in the current directory, type:

$ info —f fag.info RET

This command starts info and opens the Info file “faq.info’, beginning at the top node in the file.

To read a specific node in an Info file, give the name of the node to use in quotes as an argument to the
“—n' option.

» To read “fag.info', an Info file in the current directory, beginning with the node Text, type:

$info —n 'Text' —f faq.info RET

NOTE: You can also read Info documentation directly from the Emacs editor; you type C—h i from Emacs
to start the Info reader, and then use the same commands as in the standalotoirféze section Getting

Acquainted with Emacs).

The Emacs "incremental” search command, C-s, also works in info; it's a very fast, efficient way to search
for a word or phrase in an entire Info text (like this entire book)Sseeching Incrementally in Emacs.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3.8.6 Reading System Documentation and Help Files

@sf{Debian}: "doc-linux-text'

@sfH{WWW}: http://linuxdoc.org/

The “/usr/doc' directory is for miscellaneous documentation: HOWTOs, FAQs, Debian-specific
documentation files and documentation files that come with commands. (To learn more about files and
directories, segiles and Directories.) To peruse any of these files, use Jatesscribed in full in Perusing
Text.

When a software package is installed, any additional documentation files it might have beyond a manual pa
and Info manual are placed here, in a subdirectory with the name of that package. For example, additional
documentation for the hostname package is in “/usr/doc/hostname’, and documentation for the

passwd package is in “/usr/doc/passwd'. Most packages have a file called 'README', which

usually contains relevant information. Often this file is compressed as '/README.gz', in which case you

3. What Every Linux User Knows 40

http://linuxdoc.org/

The Linux Cookbook: Tips and Techniques for Everyday Use:

can use zless instead of less.

The Linux Documentation Project (LDP) has overseen the creation of more than 100 "HOWTOQ" files, each
of which covers a particular aspect of the installation or use of Linux—based systems.

The LDP HOWTOs are compressed text files stored in the “/usr/doc/HOWTQ' directory; to view them,
use zless. The file “/usr/doc/HOWTO/HOWTO-Index.gz' contains an annotated index of all the
HOWTO documents installed on the systdrh)

Finally, the “/usr/doc/FAQ' directory contains a number of FAQ ("Frequently Asked Questions") files
on various subjects, and the files that make up the Debian FAQ are in the

“Jusr/doc/debian/FAQ' directory. The Debian FAQ is available both in HTML format, which you

can view in a Web browser (see sectBiowsing Files), and as a compressed text file, which you can view
in zless.

» To view the HTML version of the Debian FAQ in the lynx Web browser, type:

$ lynx /usr/doc/debian/FAQ/debian—faq.html RET

» To view the compressed text version of the Debian FAQ in zless, type:

$ zless /usr/doc/debian/FAQ/debian—fag.txt.gz RET

NOTE: It's often very useful to use a Web browser to browse through the documentation files in these
directories——se8rowsing Files.

On some systems, “/usr/doc' is superseded by the “/usr/share/doc’ directory.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

3. What Every Linux User Knows 41

4. The Shell

The subject of this chapter is the shell, the program that reads your command input and runs the specified
commands. The shell environment is the most fundamental way to interact with the system—-—-you are said tc
be "in" a shell from the very moment you've successfully logged in to the system.

The "$' character preceding the cursor is called the shell prompt; it tells you that the system is ready and
waiting for input. On Debian systems, the default shell prompt also includes the name of the current director
(see sectiofriles and Directories). A tilde character ("~') denotes your home directory, which is where

you'll find yourself when you log in.

For example, a typical user's shell prompt might look like this:

~$

If your shell prompt shows a number sign (‘#') instead of a °$', this means that you're logged in with the
superuser, or root, account. Beware: the root account has complete control over the system; one wrong
keystroke and you might accidentally break it something awful. You need to have a different user account fa
yourself, and use that account for your regular use (see shtaking a User Account).

Every Linux system has at least one shell program, and most have several. We'll cover bash, which is the
standard shell on most Linux systems. (Its name stands for "Bourne again shell'-——a pun on the name of
Steve Bourne, who was author of the traditional Unix shell, the Bourne shell.)

NOTE: See Info file "bashref.info’, node "Top', for more information on using bash.

4.1 Keys for Command Line Editing Using the command line.

4.2 Redirecting Input and Qutput How to redirect input and output.

4.3 Managing Jobs Managing your jobs.

4.4 Command History Using the command history.

4.5 Recording a Shell Session Making a typescript of a shell session.

4.6 Customizing Your Shell Popular ways to customize your shells.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.1 Keys for Command Line Editing

In Running a Command, you learned how to run commands by typing them in at the shell prompt. The text
you type at a shell prompt is called the command line (it's also called the input line).

4. The Shell 42

The Linux Cookbook: Tips and Techniques for Everyday Use:

The following table describes the keystrokes used for typing command lines.

KEYSTROKES
text

BKSP
DEL
RET

C-a
Cc-d
C-e
C-k
C-l

C-u
C-y

C_

@leftarrow
@rightarrow

@uparrowand@downarrow

NOTE: These keyboard commands are the same as those used by the Emacs editor (see section Emacs).

DESCRIPTION

Insert text at the point where the cursor is at; if there is text to the right of
the cursor, it is shifted over to the right.

Delete the character to the left of the cursor.
Delete the character the cursor is underneath.

Send the command line to bash for execution (in other words, it runs the
command typed at the shell prompt). You don't have to be at the far right
end of the command line to type RET; you can type it when the cursor is
anywhere on the command line.

Move the cursor to the beginning of the input line.
Same as DEL (this is the Emacs equivalent).
Move the cursor to the end of the input line.

Kill, or "cut," all text on the input line, from the character the cursor is
underneath to the end of the line.

Clear the terminal screen.

Kill the entire input line.

Yank, or "paste,” the text that was last killed. Text is inserted at the point
where the cursor is.

Undo the last thing typed on this command line.

Move the cursor to the left one character. [GNU INFO BUG: any <> in the
preceding line should be the <- arrow key.]

Move the cursor to the right one character. [GNU INFO BUG: any <> in
the preceding line should be the —> arrow key.]

Cycle through the command history (see sediommand History). [GNU
INFO BUG: any <> in the preceding line should be the up and down arrow
keys.]

Many other Emacs keyboard commands also work on the command line (seeBasitidimacs Editing
Keys). And, for Vi aficionados, it is possible to configure bash to recognize Vi-style bindings instead.

The following sections describe some important features of command line editing, such as quoting special
characters and strings, letting the shell complete your typing, re-running commands, and running multiple
commands. See Info file "bashref.info', node "Command Line Editing’ for more information on bash's
command line editing features.

4.1.1 Passing Special Characters to Quoting special characters and strings.

Commands

4.1.2 | etting the Shell Complete What You Let bash complete what you type.

Type

4.1.3 Repeating the Last Command You Running a command more than once.

Typed

4. The Shell

43

The Linux Cookbook: Tips and Techniques for Everyday Use:

4.1.4 Running a List of Commands Running more than one command at a
time.
[<] [2] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.1.1 Passing Special Characters to Commands

Some characters are reserved and have special meaning to the shell on their own. Before you can pass one
these characters to a command, you must quote it by enclosing the entire argument in single quotes ().

For example, here's how to pass "Please Stop!' to a command:
'Please Stop!"

When the argument you want to pass has one or more single quote characters in it, enclose it in double
guotes, like so:

"Please Don't Stop!"
To pass special characters as a string, give them as:
$'string’

where string is the string of characters to be passed. Special backslash escape sequences for certain
characters are commonly included in a string, as listed in the following table.

ESCAPE SEQUENCEDESCRIPTION

\a Alert (rings the system bell).

\b Backspace.

\e Escape.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\\ Backslash.

\NNN Character whose ASCII code is NNN in octal (base 8).

To demonstrate the passing of special character sequences to tool, the following examples will use the
figlet tool, which displays the text you give as an argument in a "font" made up of text characters (see

4. The Shell 44

The Linux Cookbook: Tips and Techniques for Everyday Use:

sectionHorizontal Text Fonts).

» To pass a backslash character as an argument to figlet, type:

$ figlet $'\\' RET

» To pass a form feed character followed by a pilcrow sign character (octal character code 266) to
figlet, type:

$ echo $'\\266' RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.1.2 Letting the Shell Complete What You Type

Completion is where bash does its best to finish your typing. To use it, press TAB on the input line and the
shell will complete the word to the left of the cursor to the best of its ability. Completion is one of those
things that, once you begin to use it, you will wonder how you ever managed to get by without.

Completion works on both file names and command names, depending on the context of the cursor when y
type TAB.

For example, suppose you want to specify, as an argument to the Is command, the
“Jusr/lib/emacs/20.4/i386—debian-linux—gnu/' directory——that's a lot to type. So instead

of typing out the whole directory name, you can type TAB to complete it for you. Notice how our first
attempt, typing only the letter “e' in “/e', brings up a series of files——while the second attempt, typing
“em’, further refines our search:

$ Is /usr/lib/leTAB
elm—me+ emacs emacsen—common entity-map expect5.30
$ Is /usr/lib/lemTAB

At this point, the system bedf8) and the shell completes the word "emacs', since all options in this
directory beginning with the letters "em' complete to at least that word. Press /TAB to access this word and
go on, and the shell completes the subdirectory "20.4' since that is the only file or directory in the

‘emacs' subdirectory:

$ Is /usr/lib/lemacs/TAB20.4/

Press TAB again to have the shell complete the only subdirectory in “20.4":
$ Is /usr/lib/lemacs/20.4/TABi386—debian—linux—-gnu/

4. The Shell 45

The Linux Cookbook: Tips and Techniques for Everyday Use:

NOTE: Many applications also support command and/or file name completion; the most famous example of
this is the Emacs text editor (see section Emacs).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.1.3 Repeating the Last Command You Typed

Type @uparrow to put the last command you typed back on the input line. You can then type RET to run
the command again, or you can edit the command first. [GNU INFO BUG: any <> in the preceding line
should be the one of the cursor arrow keys.]

* To repeat the last command entered, type:

$ @uparrow RET
[GNU INFO BUG: any 60;62; in the preceding line should be the one of the cursor arrow keys.]

The @uparrow key moves the last command you typed back to the input line, and RET executes it. [GNU
INFO BUG: any <> in the preceding line should be the one of the cursor arrow keys.]

By typing @uparrow more than once, you can go back to earlier commands you've typed,; this is a function
of your command historywhich is explained in full ii€Command History. [GNU INFO BUG: any <> in the
preceding line should be the one of the cursor arrow keys.]

Additionally, you can use the bash reverse—-incremental search feature, C-r, to search, in reverse, through
your command history. You'll find this useful if you remember typing a command line with “foo' in it
recently, and you wish to repeat the command without having to retype it. Type C-r followed by the text
foo, and the last command you typed containing “foo' appears on the input line.

Like the Emacs command of the same name (see s&aaching Incrementally in Emacs), this is called an
incremental search because it builds the search string in character increments as you type. Typing the string
“cat' will first search for (and display) the last input line containing a "c', then “ca’, and finally “cat’,

as you type the individual characters of the search string. Typing C-r again retrieves the next previous
command line that has a match for the search string.

* To put the last command you entered containing the string "grep' back on the input line, type:

$C-r
(reverse—i—search)™: grep

» To put the third—to—the-last command you entered containing the string grep back on the input
line, type:

$C-r

4. The Shell 46

The Linux Cookbook: Tips and Techniques for Everyday Use:

(reverse—-i—search)™: grep
C-r C-r

When a command is displayed on the input line, type RET to run it. You can also edit the command line as
usual.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.1.4 Running a List of Commands

To run more than one command on the input line, type each command in the order you want them to run,
separating each command from the next with a semicolon (7;"). You'll sometimes find this useful when you
want to run several non-interactive commands in sequence.

* To clear the screen and then log out of the system, type:

$ clear; logout RET

* To run the hostname command three times, type:

$ hostname; hostname; hostname RET
figaro
figaro
figaro

$

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.2 Redirecting Input and Output

The shell moves text in designated "streams." The standard output is where the shell streams the text outpu
of commands—-the screen on your terminal, by default. The standard input, typically the keyboard, is where
you input data for commands. When a command reads the standard input, it usually keeps reading text unti
you type C—d on a new line by itself.

When a command runs and exits with an error, the error message is usually output to your screen, but as a
separate stream called the standard error.

You redirect these streams—-to a file, or even another command--with redirection. The following sections
describe the shell redirection operators that you can use to redirect standard input and output.

4. The Shell 47

The Linux Cookbook: Tips and Techniques for Everyday Use:

4.2.1 Redirecting Input to a File Redirecting standard input.
4.2.2 Redirecting Output to a File Redirecting standard output.
4.2.3 Redirecting Error Messages to a File Redirecting standard error.

4.2.4 Redirecting Output to Another Command's Input Building pipelines.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.2.1 Redirecting Input to a File

To redirect standard input to a file, use the "<' operator. To do so, follow a command with < and the name
of the file it should take input from. For example, instead of giving a list of keywords as arguments to
apropos (see sectioiinding the Right Tool for the Job), you can redirect standard input to a file
containing a list of keywords to use.

* To redirect standard input for apropos to file "keywords', type:

$ apropos 60; keywords RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.2.2 Redirecting Output to a File

Use the ">' operator to redirect standard output to a file. To use it, follow a command with > and the name
of the file the output should be written to.

« To redirect standard output of the command apropos shell bash to the file ‘commands',
type:

$ apropos shell bash 62; commands RET

If you redirect standard output to an existing file, it will overwrite the file, unless you use the “>>' operator
to append the standard output to the contents of the existing file.

» To append the standard output of apropos shells to an existing file ‘commands', type:
$ apropos shells 62;62; commands RET

4. The Shell 48

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.2.3 Redirecting Error Messages to a File

To redirect the standard error stream to a file, use the ">' operator preceded by a "2'. Follow a command
with 2> and the name of the file the error stream should be written to.

* To redirect the standard error of apropos shell bash to the file ‘command.error’, type:

$ apropos shell bash 262; command.error RET

As with the standard output, use the ">>' operator instead of >' to append the standard error to the
contents of an existing file.

» To append the standard error of apropos shells to an existing file ‘command.error', type:
$ apropos shells 262;62; command.error RET

To redirect both standard output and standard error to the same file, use "&>' instead.

 To redirect the standard output and the standard error of apropos shells to the file
‘commands', type:

$ apropos shells 38;62; commands RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.2.4 Redirecting Output to Another Command's Input

Piping is when you connect the standard output of one command to the standard input of another. You do tf
by specifying the two commands in order, separated by a vertical bar character, *|' (sometimes called a
"pipe"). Commands built in this fashion are called pipelines.

For example, it's often useful to pipe commands that display a lot of text output to less, a tool for perusing
text (see sectioRerusing Text).

 To pipe the output of apropos bash shell shells to less, type:

4. The Shell 49

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ apropos bash shell shells | less RET

This redirects the standard output of the command apropos bash shell shells to the standard input
of the command less, which displays it on the screen.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.3 Managing Jobs

The processes you have running in a particular shell are called your jobs. You can have more than one job
running from a shell at once, but only one job can be active at the terminal, reading standard input and
writing standard output. This job is the foreground job, while any other jobs are said to be running in the
background.

The shell assigns each job a unique job number. Use the job number as an argument to specify the job to
commands. Do this by giving the job number preceded by a %' character.

To find the job number of a job you have running, list your jobs (see ségsiomny Your Jobs).

The following sections describe the various commands for managing jobs.

4.3.1 Suspending a Job Suspending a job to do something else.
4.3.2 Putting a Job in the Background Having jobs work in the background.
4.3.3 Putting a Job in the Foreground Putting jobs in the foreground.

4.3.4 Listing Your Jobs Listing your jobs.
4.3.5 Stopping a Job Stopping jobs before they're finished.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.3.1 Suspending a Job

Type C-z to suspend or stop the foreground job—-useful for when you want to do something else in the she
and return to the current job later. The job stops until you either bring it back to the foreground or make it rur
in the background (see sectiBaotting a Job in the Foregrouadd see sectidutting a Job in the

Backaround).

For example, if you are reading a document in info, typing C—z will suspend the info program and return
you to a shell prompt where you can do something else (see ddsiimnthe GNU Info System). The shell
outputs a line giving the job number (in brackets) of the suspended job, the text "Stopped' to indicate that
the job has stopped, and the command line itself, as shown here:

4. The Shell 50

The Linux Cookbook: Tips and Techniques for Everyday Use:
[1]+ Stopped info —f cookbook.info

In this example, the job number is 1 and the command that has stopped is "info —f cookbook.info'.
The "+' character next to the job number indicates that this is the most recent job.

If you have any stopped jobs when you log out, the shell will tell you this instead of logging you out:

$ logout RET
There are stopped jobs.
$

At this point you can list your jobs (see sectigsting Your Jobs), stop any jobs you have running (see
sectionStopping a Job), and then log out.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.3.2 Putting a Job in the Background

New jobs run in the foreground unless you specify otherwise. To run a job in the background, end the input
line with an ampersand ("&"). This is useful for running non—interactive programs that perform a lot of
calculations.

» To run the command apropos shell > shell-commands as a background job, type:

$ apropos shell 62; shell-commands 38; RET
[1] 6575
$

The shell outputs the job number (in this case, 1) and process ID (in this case, 6575), and then returns to a
shell prompt. When the background job finishes, the shell will list the job number, the command, and the tex
"Done’, indicating that the job has completed successfully:

[1]+ Done apropos shell 62;shell-commands

To move a job from the foreground to the background, first suspend it (see Secimding a Job) and
then type bg (for "background").

* For example, to start the command apropos shell > shell-commands in the foreground,
suspend it, and then specify that it finish in the background, you would type:

$ apropos shell 62; shell-commands RET
C-z

4. The Shell 51

The Linux Cookbook: Tips and Techniques for Everyday Use:

[1]+ Stopped apropos shell 62;shell-commands
$ bg RET

[1]+ apropos shell 38;

$

If you have suspended multiple jobs, specify the job to be put in the background by giving its job number as
an argument.

» To run job 4 in the background, type:

$ bg %4 RET

NOTE: Running a job in the background is sometimes called "backgrounding" or "amping off" a job.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.3.3 Putting a Job in the Foreground

Type fg to move a background job to the foreground. By default, fg works on the most recent background
job.

* To bring the most recent background job to the foreground, type:

$ fg RET

To move a specific job to the foreground when you have multiple jobs in the background, specify the job
number as an option to fg.

 To bring job 3 to the foreground, type:

$ fg %3 RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.3.4 Listing Your Jobs

To list the jobs running in the current shell, type jobs.

4. The Shell 52

The Linux Cookbook: Tips and Techniques for Everyday Use:

* To list your jobs, type:

$jobs RET

[1]- Stopped apropos shell 62;shell-commands
[2]+ Stopped apropos bash 62;bash—-commands
$

This example shows two jobs——-apropos shell > shell-commands and apropos bash >
bash—-commands. The "+' character next to a job number indicates that it's the most recent job, and the
"=' character indicates that it's the job previous to the most recent job. If you have no current jobs,

jobs returns nothing.

To list all of the processes you have running on the system, use ps instead ofjefsgelisting System
Activity.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.3.5 Stopping a Job

Typing C—c interrupts the foreground job before it completes, exiting the program.

* To interrupt cat, a job running in the foreground, type:

$cat RET
C-c RET
$

Use Kill to interrupt ("kill") a background job, specifying the job number as an argument.

 To kill job number 2, type:

$ kill %2 RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.4 Command History

Your command history is the sequential list of commands you have typed, in the current or previous shell
sessions. The commands in this history list are called events.

4. The Shell 53

The Linux Cookbook: Tips and Techniques for Everyday Use:

By default, bash remembers the last 500 events, but this number is configurable (see section Customizing
Future Shells).

Your command history is stored in a text file in your home directory called ".bash_history'; you can
view this file or edit it like you would any other text file.

Two very useful things that having a command history lets you do is to repeat the last command you typed,
and (as explained earlier in this chapter) to do an incremental backwards search through your history.

The following sections explain how to view your history and specify events from it on the command line. See
Info file “bashref.info', node “Bash History Facilities’, for more information on command history.

4.4.1 Viewing Your Command History Viewing the history of what you typed.
4.4.2 Specifying a Command from Your Substituting a command from your
History history.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.4.1 Viewing Your Command History
Use history to view your command history.

» To view your command history, type:

$ history RET

1 who

2 apropos shell 62;shell-commands
3 apropos bash 62;bash-commands
4 history

$

This command shows the contents of your command history file, listing one command per line prefaced by
its event numbetJse an event number to specify that event in your history (see sp#oifying a
Command from Your History).

If your history is a long one, this list will scroll off the screen, in which case you may want to pipe the output
to less in order to peruse it. It's also common to search for a past command by piping the output to

grep (see sectioRedirecting Output to Another Command's InpntiSearching for a Word or Phrase).

» To search your history for the text "apropos’, type:

$ history | grep apropos RET

4. The Shell 54

The Linux Cookbook: Tips and Techniques for Everyday Use:

2 apropos shell 62;shell-commands
3 apropos bash 62;bash-commands
5 history | grep apropos

$

This command will show the events from your history containing the text “apropos'. (The last line of
output is the command you just typed.)

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.4.2 Specifying a Command from Your History

You can specify a past event from your history on the input line, in order to run it again.

The simplest way to specify a history event is to use the up and down arrow keys at the shell prompt to
browse your history. The up arrow key (@uparrow) takes you back through past events, and the down arrov
key (@downarrow) moves you forward into recent history. When a history event is on the input line, you
can edit it as normal, and type RET to run it as a command; it will then become the newest event in your
history. [GNU INFO BUG: any <> in the preceding line should be the one of the cursor arrow keys.]

* To specify the second-to—the—last command in your history, type:

$ @uparrow @uparrow
[GNU INFO BUG: any 60;62; in the preceding line should be the one of the cursor arrow keys.]

To run a history event by its event number, enter an exclamation point (*!', sometimes called "bang")
followed by the event number. (Get the event number by viewing your history; see S@atiorg Your
Command History).

* To run history event number 1, type:

$ 11 RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.5 Recording a Shell Session

Use script to create a typescript, or "capture log," of a shell session—-it writes a verbatim copy of your
session to a file, including commands you type and their output. The first and last lines of the file show the
beginning and ending time and date of the capture session. To stop recording the typescript, type exit at a

4. The Shell 55

The Linux Cookbook: Tips and Techniques for Everyday Use:

shell prompt. By default, typescripts are saved to a file called "typescript' in the current directory;
specify the file name to use as an argument.

» To create a typescript of a shell session and save it to the file "log.19990817', type:

$ script 10g.19990817 RET

Script started, output file is 10g.19990817
$ hostname RET

erie

$ apropos bash 62; bash.commands RET
$ exit RET

exit

Script done, output file is 10g.19990817

$

In this example, the typescript records a shell session consisting of two commands (hostname and
apropos) to a file called "10g.19990817'. The typescript looks like this:

Script started on Tue May 25 14:21:52 1999
$ hostname

erie

$ apropos bash 62; bash.commands

$ exit

exit

Script done on Tue May 25 14:22:30 1999

NOTE: It's possible, but usually not desirable, to run script from within another script session. This
usually happens when you've forgotten that you are running it, and you run it again inside the current
typescript, even multiple times—-as a result, you may end up with multiple sessions "nested" inside each
other like a set of Russian dolls.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.6 Customizing Your Shell

The following sections describe the most common ways to customize the shell--including changing the text
of the shell prompt and creating aliases for other commands. These customizations will apply to the rest of
your current shell session, unless you change them again. Eventually, you will want to make them work all
the time, like whenever you log in or start a new shell-—and how to do this is discussed below.

4.6.1 Changing the Shell Specifying the text to put in the shell prompt.
Prompt
4.6.2 Making a Command Alias Making an alias for a command sequence.

4.6.3 Adding to Your Path Adding to your path.

4. The Shell 56

The Linux Cookbook: Tips and Techniques for Everyday Use:

4.6.4 Customizing Future Shells Automatically running commands when you first log
in.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4.6.1 Changing the Shell Prompt

A shell variable is a symbol that stores a text string, and is referenced by a unique name. bash keeps one
special variable, named PS1, for the text of the shell prompt. To change the text of the shell prompt, you
need to change the contents of the PS1 variable.

To change a variable's contents, type its name followed by an equal sign ('=') character and the string that

should replace the variable's existing contents.

» To change your shell prompt to “Your wish is my command: ', type:

$ PS1="Your wish is my command: ' RET
Your wish is my command:

Since the replacement text has spaces in it, we've quoted it (see Bastorg Special Characters to
Commands).

You can put special characters in the prompt variable in order to output special text. For example, the

characters “\w' in the value of PS1 will list the current working directory at that place in the shell prompt
text.

» To change your prompt to the default bash prompt—-the current working directory followed by a
*$' character—-type:

$PS1=w $ ' RET
~$

The following table lists some special characters and their text output at the shell prompt.

SPECIAL TEXT OUTPUT

CHARACTER

\a Inserts a C—g character, which makes the internal speaker beep. (It "rings the system bell";
C-g is sometimes called the bell character.)

\d The current date.

\h The hostname of the system.

\n A newline character.

4. The Shell 57

The Linux Cookbook: Tips and Techniques for Everyday Use:

\t The current system time, in 24—hour format.

\@ The current system time, in 12—hour a.m./p.m. format.
\w The current working directory.

\u Your username.

\I The history number of this command.

You can combine any number of these special characters with regular characters when creating a value for
PS1.

» To change the prompt to the current date followed by a space character, the hostname of the systen
in parenthesis, and a greater—than character, type:

$ PS1=\d (\h)62;' RET
14 Dec 1999 (ithaca)62;

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.6.2 Making a Command Alias

Use alias to assign an alias, a name that represents another command or commands. Aliases are useful for
creating short command names for lengthy and frequently used commands.

» To make an alias of bye for the exit command, type:

$ alias bye="exit" RET

This command makes “bye' an alias for “exit' in the current shell, so typing bye would then run exit.

You can also include options and arguments in an alias.

» To make an alias of "ap' for the command apropos shell bash shells, type:

$ alias ap="apropos shell bash shells" RET

This command makes "ap' an alias for “apropos shell bash shells' in the current shell, so
typing ap would run apropos shell bash shells.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4. The Shell 58

The Linux Cookbook: Tips and Techniques for Everyday Use:
4.6.3 Adding to Your Path

To add or remove a directory in your path, use a text editor to change the shell variable "PATH' in the
“.bashrc' file in your home directory (see sectibaxt Editing).

For example, suppose the line that defines the "PATH' variable in your ".bashrc' file looks like this:

PATH="/usr/bin:/bin:/usr/bin/X11:/usr/games"

You can add the directory '/home/nancy/bin’ to this path, by editing this line like so:

PATH="/usr/bin:/bin:/usr/bin/X11:/usr/games:/home/nancy/bin"

NOTE: SeeFiles and Directories for a complete description of directories and the path.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

4.6.4 Customizing Future Shells

There are a number of configuration startup files in your home directory that you can edit to make your
configurations permanent. You can also edit these files to specify commands to be run whenever you first |
in, log out, or start a new shell. These configuration files are text files that can be edited with any text editor

(see sectiod ext Editing).

When you log in, bash first checks to see if the file “/etc/profile’ exists, and if so, it executes the
commands in this file. This is a generic, system-wide startup file that is run for all users; only the system
administrator can add or delete commands to this file.

Next, bash reads and executes the commands in “.bash_profile', a "hidden" file in your home
directory (see sectidnisting Hidden Files). Thus, to make a command run every time you log in, add the
command to this file.

For all new shells after you've logged in (that is, all but the "login shell"), bash reads and executes the
commands in the ".bashrc' file in your home directory. Commands in this file run whenever a new shell
is started except for the login shell.

There are separate configuration files for login and all other shells so that you can put specific customizatior
in your ".bash_profile' that only run when you first log in to the system. To avoid having to put

commands in both files when you want to run the same ones for all shells, append the following to the end c
your “.bash_profile' file:

if [-f ~/.bashrc]; then . ~/.bashrc; fi

4. The Shell 59

The Linux Cookbook: Tips and Techniques for Everyday Use:

This makes bash run the “.bashrc' file in your home directory when you log in. In this way, you can put
all of your customizations in your “.bashrc' file, and they will be run both at log in and for all subsequent
shells. Any customizations before this line in ".bash_profile' run only when you log in.

For example, a simple ".bash_profile' might look like this:

"Comment" lines in shell scripts begin with a # character.
They are not executed by bash, but exist so that you may
document your file.

You can insert blank lines in your file to increase readability;
bash will not mind.

Generate a welcome message when you log in.
figlet 'Good day, '$USER'"

Now run the commands in .bashrc
if [-f ~/.bashrc]; then . ~/.bashrc; fi

This ".bash_profile' prints a welcome message with the figlet text font tool (see section Horizonal
Text Fonts), and then runs the commands in the ".bashrc' file.

A simple .bashrc file might look like this:

Make color directory listings the default.
alias Is="Is ——color=auto"

Make "I" give a verbose directory listing.
alias I="Is -I"

Set a custom path.
PATH="/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games:~/bin:."

Set a custom shell prompt.
PS1="[Ww] $"

Make a long history list and history file.
HISTSIZE=20000
HISTFILESIZE=20000

Export the path and prompt variables for all

variables you define.
export HISTSIZE HISTFILESIZE PATH PS1

This ".bashrc' sets a few useful command aliases and uses a custom path and shell prompt whenever a
new shell is run; with the preceding ".bash_profile’, this ".bashrc' is also run at login.

When you log out, bash reads and executes the commands in the ".bash_logout' file in your home
directory, if it exists. To run commands when you log out, put them in this file.

* To clear the screen every time you log out, your ".bash_logout' would contain the following
line:

4. The Shell 60

The Linux Cookbook: Tips and Techniques for Everyday Use:

clear

This executes the clear command, which clears the screen of the current terminal, such as in the
xterm window where you type it, or in a virtual console.

NOTE: Some distributions come with default shell startup files filled with all kinds of interesting stuff.
Debian users might want to look at the example startup files in
“lusr/share/doc/bash/examples/startup—files'.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

4. The Shell 61

5. The X Window System

@sf{Debian}: "xserver-common'
@sf{WWW}: http://www.xfree86.ora/

The X Window System, commonly called "KL3) is a graphical windowing interface that comes with all
popular Linux distributions. X is available for many Unix—based operating systems; the version of X that
runs on Linux systems with x86—based CPUs is called "XFree86." The current version of X is 11, Revision
6——or "X11R6."

All the command-line tools and most of the applications that you can run in the console can run in X; also
available are numerous applications written specifically for X.

This chapter shows you how to get around in X: how to start it and stop it, run programs within it, manipulate
windows, and customize X to your liking. See The Linux XFree86 HOWTO for information on installing X

(see sectioReading System Documentation and Help Files).

5.1 Running X What X looks like, and how to run it.

5.2 Running a Program in X Running programs in X.

5.3 Manipulating X Client Windows How to manipulate a window.

5.4 Moving around the Desktop Moving around the desktop.

5.5 Running a Shell in X Running a shell in X.

5.6 Configuring X Making X run the way you want it to.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]
5.1 Running X

@sf{WWW}: http://www.afterstep.org/
@sf{WWW}: http://www.fvwm.org/

@sf{WWW}: http://www.windowmaker.orag/

@sf{WWW}: http://www.anome.ora/
@sf{WWW}: http://www.kde.org/

When you start X, you should see a mouse pointer appear on the screen as a large, black "X." If your X is
configured to start any tools or applications, they should each start and appear in individual windows. A
typical X session looks like this:

5. The X Window System 62

http://www.xfree86.org/
http://www.afterstep.org/
http://www.fvwm.org/
http://www.windowmaker.org/
http://www.gnome.org/
http://www.kde.org/

The Linux Cookbook: Tips and Techniques for Everyday Use:

=|

bash-2,03% []

The root window is the background behind all of the other windows. It is usually set to a color, but you can
change it (see secti@@hanging the Root Window Parameters). Each program or application in X runs in its
own window. Each window has a decorative border on all four sides, called the window border; L-shaped
corners, called frames; a top window bar, called the title bar, which displays the name of the window; and
several title bar buttons on the left and right sides of the title bar (describtthipulating X Client

Windows).

The entire visible work area, including the root window and any other windows, is called the desktop. The
box in the lower right—hand corner, called the pager, allows you to move about a large desktop (see section

Moving around the Desktop).

A window manager controls the way windows look and are displayed—-the window dressing, as it
were——and can provide some additional menu or program management capabilities. There are many differe
window managers to choose from, with a variety of features and capabilities. (SeeGeatisimg a

Window Manager, for help in choosing a window manager that's right for you.)

5. The X Window System 63

The Linux Cookbook: Tips and Techniques for Everyday Use:

Window managers typically allow you to customize the colors and borders that are used to display a window
as well as the type and location of buttons that appear on the window (seeRantigrg a Program in X).

For example, in the image above, the clock image itself is the oclock program; the blue outline around it is
the window border, as drawn by the fvwm2 window manager. With the afterstep window manager, the
window border would look quite different:

kI 5 =X

There are many window managers you can choose from, all different; instead of describing only one, or
describing all of them only superficially, this chapter shows the basics of X, which are common to all
window managers. | try to make no assumptions as to which window manager you are using; while the
fvwm family of window managers has long been a popular choice on most Linux—based systems, today othe
window managers——including WindowMaker (the binary itself is called wmaker), Enlightenment,

AfterStep, and others——have all gained in popularity.

And recently, desktop environments have become popular. These are a collection of applications that run ot
top of the window manager (and X), with the purpose of giving your X session a standardized "look and
feel"; these suites normally come with a few basic tools such as clocks and file managers. The two popular
ones are GNOME and KDE, and while they generate a lot of press these days because of their graphical
nature, both are changing very quickly and at the time of this writing are not yet ready for widespread,
general use (and they can cause your system to crash).

If you have a recent Linux distribution and chose the default install, chances are good that you have either
GNOME or KDE installed, with either the fvwm?2 or wmaker window manager assigned as the default.
(While you can have more than one window manager installed on your system, you can only run one at a
time.)

5.1.1 Starting X How to start X.
5.1.2 Stopping X How to stop X.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5. The X Window System 64

The Linux Cookbook: Tips and Techniques for Everyday Use:
5.1.1 Starting X

There are two ways to start X. Some systems run the X Display Manager, xdm, when the system boots, at
which point a graphical xdm login screen appears; you can use this to log in directly to an X session. On
systems not running xdm, the virtual console reserved for X will be blank until you start X by running the
startx command.

 To start X from a virtual console, type:

$ startx RET

* To run startx and redirect its output to a log file, type:

$ startx 62;3HOME/startx.log 262;38;1 RET

Both of these examples start X on the seventh virtual console, regardless of which console you are at when
you run the command—--your console switches to X automatically. You can always switch to another consol
during your X session (see sectidonsole Basics). The second example writes any error messages or output
of startx to a file called “startx.log' in your home directory.

On some systems, X starts with 8—bit color depth by default. Use startx with the special "—bpp' option

to specify the color depth. Follow the option with a number indicating the color depth to use, and precede th
option with two hyphen characters ("=-"), which tells startx to pass the options which follow it to the X
server itself.

» To start X from a virtual console, and specify 16-bit color depth, type:

$ startx — —bpp 16 RET

NOTE: If your system runs xdm, you can always switch to the seventh virtual console (or whichever console
xdm is running on), and then log in at the xdm login screen.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.1.2 Stopping X
To end an X session, you normally choose an exit X option from a menu in your window manager.

« To end your X session if you are running the fvwmz2 window manager, click the left mouse button in
the root window to pull up the start menu, and then choose Really quit? from the Exit

5. The X Window System 65

The Linux Cookbook: Tips and Techniques for Everyday Use:

Fvwm submenu.

» To end your X session if you are running the afterstep window manager, click the left mouse
button in the root window to pull up the start menu, and then choose Really quit? from the
Exit Fvwm submenu.

If you started your X session with startx, these commands will return you to a shell prompt in the virtual
console where the command was typed. If, on the other hand, you started your X session by logging in to
xdm on the seventh virtual console, you will be logged out of the X session and the xdm login screen will
appear; you can then switch to another virtual console or log in to X again.

To exit X immediately and terminate all X processes, press the CTRL-ALT-BKSP combination (if your
keyboard has two ALT and CTRL keys, press the left ones). You'll lose any unsaved application data, but th
is useful when you cannot exit your X session normally——in the case of a system freeze or other problem.

» To exit X immediately, type:

CTRL-ALT-BKSP

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5.2 Running a Program in X

Programs running in an X session are called X clients. (The X Window System itself is called the X server).
To run a program in X, you start it as an X client——either by selecting it from a menu, or by typing the
command to run in an xtermshell window (see sectidRunning a Shell in X). Most window managers have

a "start menu" of some kind; it's usually accessed by clicking the left mouse button anywhere on the root
window. To run an X client from the start menu, click the left mouse button to select the client's name from
the submenus.

For example, to start a square—shaped, analog—face clock from the start menu, click the left mouse button ¢
the root window to make the menu appear, and click the left mouse button through the application menus ar
on “Xclock (analog)'. This starts the xclock client, specifying the option to display an analog face:

KifN B =1X]
,\lllf y
N f
z :
“ / s
l"/ \\\

||||||

5. The X Window System 66

The Linux Cookbook: Tips and Techniques for Everyday Use:

You can also start a client by running it from a shell window—-useful for starting a client that isn't on the
menu, or for when you want to specify options or arguments. When you run an X client from a shell window,
it opens in its own window; run the client in the background to free the shell prompt in the shell window (see

sectionPutting a Job in the Backaround).

» To run a digital clock from a shell window, type:

$ xclock —digital 38; RET

This command runs xclock in the background from a shell window; the “digital' option specifies a
digital clock.

The following sections explain how to specify certain command-line options common to most X
clients——such as window layout, colors, and fonts.

5.2.1 Specifying Window Size and Location Specifying the size and location of a

window.
5.2.2 Specifying Window Colors Specifying the colors of a window.
5.2.3 Specifying Window Fant Specifying the fonts for a window.
5.2.4 Specifying Additional Window A list of window properties you can
Attributes specify.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.2.1 Specifying Window Size and Location

Specify a window's size and location by giving its window geometry with the “geometry' option. Four
fields control the width and height of the windows, and the window's distance ("offset") from the edge of the
screen. It is specified in the form:

—geometry WIDTHXHEIGHT+XOFF+YOFF

The values in these four fields are usually given in pixels, although some applications measure WIDTH and
HEIGHT in characters. While you must give these values in order, you can omit either pair. For example, to
specify just the size of the window, give values for WIDTH and HEIGHT only.

* To start a small xclock, 48 pixels wide and 48 pixels high, type:

$ xclock —geometry 48x48 RET

5. The X Window System 67

The Linux Cookbook: Tips and Techniques for Everyday Use:
 To start a large xclock, 480 pixels wide and 500 pixels high, type:

$ xclock —geometry 480x500 RET

* To start an xclock with a width of 48 pixels and the default height, type:

$ xclock —geometry 48 RET

 To start an xclock with a height of 48 pixels and the default width, type:

$ xclock —geometry x48 RET

You can give positive or negative numbers for the XOFF and YOFF fields. Positive XOFF values specify a
position from the left of the screen; negative values specify a position from the right. If YOFF is positive, it
specifies a position from the top of the screen; if negative, it specifies a position from the bottom of the
screen. When giving these offsets, you must specify values for both XOFF and YOFF.

To place the window in one of the four corners of the desktop, use zeroes for the appropriate XOFF and
YOFF values, as follows:

XOFF AND YOFF VALUES WINDOW POSITION

+0+0 Upper left corner.
+0-0 Lower left corner.
-0+0 Upper right corner.
-0-0 Lower right corner.

 To start a default size xclock in the lower left—-hand corner, type:

$ xclock —geometry +0-0 RET

Or, to put it all together, you can specify the size and location of a window with one geometry line that
includes all four values.

* To start an xclock with a width of 120 pixels, a height of 100 pixels, an x offset of 250 pixels from
the right side of the screen, and a y offset of 25 pixels from the top of the screen, type:

$ xclock —geometry 120x100-250+25 RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5. The X Window System 68

The Linux Cookbook: Tips and Techniques for Everyday Use:
5.2.2 Specifying Window Colors

The window colors available in your X session depend on your display hardware and the X server that is
running. The xcolors tool will show all colors available on your X server and the names used to specify
them. (Color names are not case sensitive.)

* To list the available colors, type:

$ xcolors RET

Press Q to exit xcolors.

To specify a color to use for the window background, window border, and text or graphics in the window
itself, give the color name as an argument to the appropriate option: "—bg' for background color, "=bd' for
window border color, and "—fg' for foreground color.

* To start an xclock with a light blue window background, type:
$ xclock —bg lightblue RET
You can specify any combination of these attributes.
» To start an xclock with a sea green window background and a turquoise window foreground, type:

$ xclock —bg seagreen —fg turquoise RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.2.3 Specifying Window Font

To get an X font name, use xfontsel (see sectioX Fonts). To specify a font for use in a window, use the
"—fn" option followed by the X font name to use.

« To start an xclock with a digital display, and specify that it use a 17—point Helvetica font for text,
type:

$ xclock —digital -fn —*-helvetica—*—r—*—*-17-*—*—*—*—*_*_* RET

5. The X Window System 69

The Linux Cookbook: Tips and Techniques for Everyday Use:

This command starts an xclock that looks like this:

KIN 51 =X
Thu Jan 25 11:15:23 2001

NOTE: If you specify the font for a shell window, you can resize it after it's running, as described in Resizing
the Xterm Font.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5.2.4 Specifying Additional Window Attributes

X applications often have up to three special menus with options for changing certain attributes. To see thes
menus, hold CTREANd click one of the three mouse butths) The following table lists and describes
various window attributes common to most X—aware applications.

WINDOW OPTIONS DESCRIPTION

—bd color Use color for the window border color.
—bordercolor color

—bg color Use color for the window background color.
—background color

—bw number Specify the window border width in pixels.
—borderwidth number

—fg color Use color for the window foreground text or graphics.
—foreground color

—fn font Use font for the font to use.

—font font

—geometry geometry Specify window geometry.

—iconic Immediately iconify the program (see sectiddimimizing a Window).
—title string Use string for the window title.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.3 Manipulating X Client Windows

Only one X client can accept keyboard and mouse input at a time, and that client is called the active client.
make a client active, move the mouse over the client's window. When a client is the active client, it is said to
be "in focus." Depending on the window manager, the shape of the mouse pointer may change, or the

5. The X Window System 70

The Linux Cookbook: Tips and Techniques for Everyday Use:

window border and title bar of the active client may be different (a common default is steel blue for the active
client color and gray for all other windows).

Each window has its own set of controls to manipulate that window. Here's how to perform basic window
operations with the mouse.

5.3.1 Moving a Window Moving a window.
5.3.2 Resizing a Window Resizing a window.

5.3.3 Destroying a Window When you don't want a window anymore.
5.3.4 Minimizing a Window Turning a window into an icon.
5.3.5 Maximizing a Window Restoring a window from an icon.

(<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.3.1 Moving a Window

To move a window, click and hold the left mouse button on the window's title bar, then drag its window
outline to a new position. When the outline is in place, release the left mouse button, and the window will
move to the position held by the window outline.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.3.2 Resizing a Window

To resize a window, click and hold the left mouse button on any one of the window's four frames, and move
the mouse to shrink or grow the window outline. Release the left mouse button to resize the window to the
size of the window outline.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5.3.3 Destroying a Window

To destroy a window and stop the program it displays, click the left mouse button on the “X' button in the
upper right—hand corner of the title bar. This is useful for when the program running in the window has
stopped responding. (Of course, if a program in a window has an option to stop it normally, you can always
use it to stop the program and close its window.)

5. The X Window System 71

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.3.4 Minimizing a Window

To minimize a window, so that it disappears and an icon representing the running program is placed on the
desktop, click the left mouse button on the ~_' button in the upper right—hand corner of the title bar. This is
also called iconifying a window.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5.3.5 Maximizing a Window

To maximize an icon to a window (or "deiconify" it), double—click the left mouse button on the icon name,
directly beneath the icon itself. The icon will disappear and the window will return to its prior position.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5.4 Moving around the Desktop

Many window managers (including afterstep and fvwm2) allow you to use a virtual desktop, which lets

you use more screen space than your monitor can display at one time. A virtual desktop can be larger than 1
display, in which case you can scroll though it with the mouse. The view which fills the display is called the
viewport. When you move the mouse off the screen in a direction where the current (virtual) desktop extend
the view scrolls in that direction. Virtual desktops are useful for running many clients full screen at once,
each in its own separate desktop.

Some configurations disallow scrolling between desktops; in that case, switch between them with a pager,
which shows a miniature view of your virtual desktop, and allows you to switch between desktops. Itis a
sticky window (it "sticks to the glass" above all other windows), and is always in the lower right—-hand corner
of your screen, even when you scroll across a virtual desktop. Both your current desktop and active X client
are highlighted in the pager.

The default fvwm?2 virtual desktop size is nine desktops in a 3x3 grid:

5. The X Window System 72

The Linux Cookbook: Tips and Techniques for Everyday Use:

In the preceding illustration, the current desktop is the second one in the top row. The first desktop contains
two X client windows——a small one and a large one——but there are no windows in any other desktop
(including the current one).

To switch to another desktop, click the left mouse button on its corresponding view in the pager, or use a
keyboard shortcut. In fvwm2, the default keys for switching between desktops are ALT in conjunction with
the arrow keys; in afterstep, use the CTRL key in place of ALT.

» To switch to the desktop to the left of the current one while running fvw2, type
ALT-{@leftarrow}. [GNU INFO BUG: any <> in the preceding line should be the <— and/or —>
arrow keys.]

 To switch to the desktop directly to the left of the current one while running afterstep, type
CTRL-{@leftarrow}. [GNU INFO BUG: any <> in the preceding line should be the <— and/or
—> arrow keys.]

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.5 Running a Shell in X

Use xterm to run a shell in a window. You can run commands in an xterm window just as you would in a
virtual console; a shell in an xtermacts the same as a shell in a virtual console (see s&t&oghell).

Unlike a shell in a console, you can cut and paste text from an xterm to another X client (see section
Selecting Text).

To scroll through text that has scrolled past the top of the screen, type Shift—-PgUp. The number of lines
you can scroll back to depends on the value of the scrollback buffer, specified with the “—sl' option; its
default value is 64.

There are many options for controlling xterm's emulation characteristics; consult the xtermman page for a
complete listing (see sectifteading a Page from the System Manual).

NOTE:xterm is probably the most popular terminal emulator X client, but it is not the only one; others to
choose from include wterm and rxvt, all with their own special features——try them all to find one you like.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5. The X Window System 73

The Linux Cookbook: Tips and Techniques for Everyday Use:
5.6 Configuring X

There are some aspects of X that people usually want to configure right away. This section discusses some
the most popular, including changing the video mode, automatically running clients at startup, and choosing
window manager. You'll find more information on this subject in both The X Window User HOWTO and The
Configuration HOWT(for how to read them, sé&eading System Documentation and Help Files).

5.6.1 Switching between Video Modes Changing video modes and resolutions.

5.6.2 Running X Clients Automatically Running certain clients automatically.

5.6.3 Changing the Root Window Parameters Changing the root window parameters.

5.6.4 Choosing a Window Manager The choice of window manager is yours!
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.6.1 Switching between Video Modes

A video mode is a display resolution, given in pixels, such as 640x480. An X server can switch between the
video modes allowed by your hardware and set up by the administrator; it is not uncommon for a machine
running X to offer several video modes, so that 640x480, 800x600, and 1024x768 display resolutions are
possible.

To switch to another video mode, use the + and — keys on the numeric keypad with the left CTRL and
ALT keys. The + key switches to the next mode with a lower resolution, and the — key switches to the next
mode with a higher resolution.

* To switch to the next—-lowest video mode, type:

CTRL-ALT-+

» To switch to the next-highest video mode, type:

CTRL-ALT—-

Type either of the above key combinations repeatedly to cycle through all available modes.

NOTE: For more information on video modes, see The XFree86 Video Timings HOWTO (see section
Reading System Documentation and Help Files).

5. The X Window System 74

The Linux Cookbook: Tips and Techniques for Everyday Use:
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

5.6.2 Running X Clients Automatically

The ".xsession' file, a hidden file in your home directory, specifies the clients that are automatically run
when your X session first starts ("hidden" files are explainédlés and Directories). It is just a shell script,
usually containing a list of clients to run. You can edit your ".xsession' file in a text editor, and if this
file doesn't exist, you can create it.

Clients start in the order in which they are listed, and the last line should specify the window manager to use
The following example ".xsession' file starts an xterm with a black background and white text, puts an
“oclock' (a round clock) window in the upper left—hand corner, starts the Emacs text editor, and then

starts the fvwm2 window manager:

#! /bin/sh
#
A sample .xsession file.

xterm —bg black —fg white 38;
oclock —geometry +0+0 38;
emacs 38;

exec /usr/bin/X11/fvwm?2

All clients start as background jobs, with the exception of the window manager on the last line, because whe
this file runs, the X session is running in the foreground (see s@dtinaging Jobs). Always put an

ampersand ("&'") character at the end of any command line you put in your ".xsession' file, except for

the line giving the window manager on the last line.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5.6.3 Changing the Root Window Parameters

By default, the root window background is painted gray with a weaved pattern. To draw these patterns, X
tiles the root window with a bitmap, which is a black—and-white image stored in a special file format. X
comes with some bitmaps installed in the “/usr/X11R6/include/bitmaps/' directory; the default

bitmap file is “root_weave' (you can make your own patterns with the bitmap tool; see _Interactive

Image Editors and Tools).

Use xsetroot to change the color and bitmap pattern in the root window.
To change the color, use the "—solid' option, and give the name of the color to use as an argument. (Use
xcolors to get a list of possible color names; see se&@erifying Window Colors.)

« To change the root window color to blue violet, type:

5. The X Window System 75

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ xsetroot —solid blueviolet RET

To change the root window pattern, use the "—bitmap' option, and give the name of the bitmap file to use.

* To tile the root window with a star pattern, type:

$ xsetroot —bitmap /usr/X11R6/include/bitmaps/star RET

When specifying a pattern, use the "—fg' and "—bg' options to specify the foreground and background
colors.

« To tile the root window with a light slate gray star pattern on a black background, type (all on one
line):

$ xsetroot —fg slategray2 —bg black —bitmap
/usr/X11R6/include/bitmaps/star RET

Use xsetroot with the special "—gray' option to change the root window to a shade of gray designed to
be easy on the eyes, with no pattern.

» To make the root window a gray color with no pattern, type:

$ xsetroot —gray RET

NOTE: You can also put an image in the window (although this consumes memory that could be spared for
memory—-hogging Web browser instead; butBe#ing an Image in the Root Window, for how to do it).

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

5.6.4 Choosing a Window Manager

Yes, there are many window managers to choose from. Some people like the flashiness of Enlightenment,
running with KDE or GNOME, while others prefer the spartan wm2---the choice is yours.

The following table describes some of the more popular window managers currently available.

WINDOW DESCRIPTION
MANAGER
9wm 9wm is a simple window manager inspired by AT&T's Plan 9 window manager——it

does not use title bars or icons. It should appeal to those who like the wily text editor
(see sectiofhoosing the Perfect Text Editor). {@sf{Debian}}:

5. The X Window System 76

afterstep

enlightenment

fvwm95

twm

wm?2

The Linux Cookbook: Tips and Techniques for Everyday Use:

owm' {@sf{WWW}}: ftp://ftp.cs.su.oz.au/dhog/Qwm/

AfterStep is inspired by the look and feel of the NeXTSTEP interface. {@sf{Debian}}:
“afterstep’ {@s{WWW}}: http://www.afterstep.org/

Enlightenment is a graphics—intensive window manager that uses desktop "themes" for
decorating the various controls of the X session. {@sf{Debian}}:

“enlightenment’ {@sH{WWW}}: hitp://www.enlightenment.org/

fvwm95 makes X look like a certain proprietary, corporate OS from circa 1995.
{@sf{Debian}}: "fvwm95' {@sf{WWW}}:

http://www.foxproject.org/xclass/fvwm95.html

The Tab Window Manager is an older, simple window manager that is available on
almost every system. (It's also sometimes called Tom's Window Manager, named after
its primary author, Tom LaStrange.) {@sf{Debian}}: “twm'

wmz2 is a minimalist, configuration—free window manager. {@sf{Debian}}:

‘'wm2' {@sf{WWW}}: http://www.all-day—breakfast.com/wm?2/

(<] [=]

[=<] [Up] [>>] [Top] [Contents] [Index] [2]

5. The X Window System 77

ftp://ftp.cs.su.oz.au/dhog/9wm/
http://www.afterstep.org/
http://www.enlightenment.org/
http://www.foxproject.org/xclass/fvwm95.html
http://www.all-day-breakfast.com/wm2/

PART TWO: Files

6. Files and Directories Basic commands for everyone.

7. Sharing Files Sharing files between users.
8. Finding Files There's more than one way to find a file.
9. Managing Files How to manage your files.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

PART TWO: Files 78

6. Files and Directories

This chapter discusses the basic tools for manipulating files and directories——tools that are among the most
essential on a Linux system.

A file is a collection of data that is stored on disk and that can be manipulated as a single unit by its name.
A directory is a file that acts as a folder for other files. A directory can also contain other directories
(subdirectories); a directory that contains another directory is called the parent directory of the directory it
contains.

A directory tree includes a directory and all of its files, including the contents of all subdirectories. (Each
directory is a "branch" in the "tree.") A slash character alone (°/") is the name of the root directory at the

base of the directory tree hierarchy; it is the trunk from which all other files or directories branch.

The following image shows an abridged version of the directory hierarchy.

6. Files and Directories 79

The Linux Cookbook: Tips and Techniques for Everyday Use:

dict

joe

home

(root)

To represent a directory's place in the file hierarchy, specify all of the directories between it and the root
directory, using a slash ('/') as the delimiter to separate directories. So the directory “dict' as it appears

6. Files and Directories 80

The Linux Cookbook: Tips and Techniques for Everyday Use:

in the preceding illustration would be represented as “/usr/dict'.

Each user has a branch in the "/home' directory for their own files, called their home directory. The
hierarchy in the previous illustration has two home directories: “joe' and “jon', both subdirectories of
‘/home".

When you are in a shell, you are always in a directory on the system, and that directory is called the current
working directory. When you first log in to the system, your home directory is the current working directory.

Whenever specifying a file name as an argument to a tool or application, you can give the slash—delimited
path name relative to the current working directory. For example, if ‘/home/joe’ is the current working
directory, you can use work to specify the directory “/home/joe/work’, and work/schedule to

specify “schedule', a file in the "/home/joe/work’ directory.

Every directory has two special files whose names consist of one and two periods: ".." refers to the parent
of the current working directory, and ".' refers to the current working directory itself. If the current working
directory is “/homel/joe', you can use ".' to specify /home/joe' and ".." to specify ‘/home'.

Furthermore, you can specify the “/homel/jon' directory as ../jon.

Another way to specify a file name is to specify a slash—delimited list of all of the directory branches from
the root directory (*/') down to the file to specify. This unique, specific path from the root directory to a file

is called the file's full path name. (When referring to a file that is not a directory, this is sometimes called the
absolute file name).

You can specify any file or directory on the system by giving its full path name. A file can have the same
name as other files in different directories on the system, but no two files or directories can share a full path
name. For example, user joe can have a file “schedule' in his “/home/joe/work’ directory and a

file “schedule' in his “/homel/joe/play’ directory. While both files have the same name

(‘schedule"), they are contained in different directories, and each has a unique full path
name——-"/home/joe/work/schedule' and “/home/joe/play/schedule’.

However, you don't have to type the full path name of a tool or application in order to start it. The shell keep:
a list of directories, called the path, where it searches for programs. If a program is "in your path," or in one
of these directories, you can run it simply by typing its name.

By default, the path includes “/bin' and “/usr/bin'. For example, the who command is in the
“Jusr/bin' directory, so its full path name is /usr/bin/who. Since the “/usr/bin' directory is in
the path, you can type who to run /usr/bin/who, no matter what the current working directory is.

The following table describes some of the standard directories on Linux systems.

DIRECTORY DESCRIPTION

/ The ancestor of all directories on the system; all other directories are subdirectories of this
directory, either directly or through other subdirectories.

/bin Essential tools and other programs (or binaries).

/dev Files representing the system's various hardware devices. For example, you use the file
‘/dev/cdrom’ to access the CD—ROM drive.

letc Miscellaneous system configuration files, startup files, etcetera.

/home The home directories for all of the system's users.

6. Files and Directories 81

Nlib
/proc
/root

/sbin

Itmp

fusr
Jusr/X11R6

/usr/bin
fusr/dict
/usr/doc
/usr/games
{usr/info
usr/lib
lusr/local

/usr/man

Jusr/share

lusr/src
fusr/tmp
Ivar

The Linux Cookbook: Tips and Techniques for Everyday Use:

Essential system library files used by tools in “/bin'.
Files that give information about current system processes.

The superuser's home directory, whose username is root. (In the past, the home directory
for the superuser was simply */'; later, “/root' was adopted for this purpose to reduce
clutter in °/".)

Essential system administrator tools, or system binaries.
Temporary files.
Subdirectories with files related to user tools and applications.

Files relating to the X Window System, including those programs (in
“fusr/X11R6/bin") that run only under X.

Tools and applications for users.

Dictionaries and word lists (slowly being outmoded by “/usr/share/dict’).
Miscellaneous system documentation.

Games and amusements.

Files for the GNU Info hypertext system.

Libraries used by tools in “/usr/bin'.

Local files——files unique to the individual system—-including local documentation (in
“lusr/local/doc’) and programs (in “/usr/local/bin’).

The online manuals, which are read with the mammand (see secti@teading a Page
from the System Manual).

Data for installed applications that is architecture—independent and can be shared between
systems. A number of subdirectories with equivalents in “/usr' also appear here,

including “/usr/share/doc’, “/usr/share/info’, and

“lusr/share/icons'.

Program source code for software compiled on the system.
Another directory for temporary files.
Variable data files, such as spool queues and log files.

NOTE: For more information on the directory structure of Linux—based systems, view the compressed files

in the “/usr/doc/debian—policy/fsstnd/'

6.1 Naming Files and Directories

6.2 Changing Directories

6.3 Listing Directories

6.4 Copying Files and Directories

6.5 Moving Files and Directories

6.6 Removing Files and Directories
6.7 Giving a File More than One Name
6.8 Specifying File Names with

directory (see sectidPerusing Text).

How to give names to your files and directories.
How to move around the filesystem.

Listing the contents of a directory.

Making copies of files.

Moving files to a different location.

Removing files and directories you don't need.
Creating links between files.

Shortcuts for specifying file names.

Patterns

6.9 Browsing Files

Browsing files on the system.

6. Files and Directories 82

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.1 Naming Files and Directories

File names can consist of upper— and lowercase letters, numbers, periods ("."), hyphens ("-'), and
underscores ("_").(15) File names are also case sensitive———"foo', 'Foo' and "FOOQO' are all different
file names. File names are almost always all lowercase letters.

Linux does not force you to use file extensions, but it is convenient and useful to give files proper extension:s
since they will help you to identify file types at a glance. You can have files with multiple extensions, such ac
“long.file.with.many.extensions', and you can have files with none at all, such as "myfile'.

A JPEG image file, for example, does not have to have a ".jpg' or ".jpeg' extension, and program files

do not need a special extension to make them work.

The file name before any file extensions is called the base file name. For example, the base file name of
"house.jpeg' is "house'.

Some commonly used file extensions are shown in the following table, including extensions for text and
graphics files. (Se€onverting Images between Formats, for more extensions used with image files, and see
Playing a Sound File, for extensions used with sound files.)

EXTENSION DESCRIPTION

xtor.text Plain, unformatted text.

tex Text formatted in the TeX or LaTeX formatting language.

txor.latex Text formatted in the LaTeX formatting language (neither are as common as just using
".tex’).

.0z A compressed file.

.sgmi SGML ("Standardized General Markup Language") format.

.html HTML ("Hypertext Markup Language") format.

xml XML ("Extended Markup Language") format.

The following sections show how to make new files; to rename an existing file, move it to a file with the new
name—-—sedloving Files and Directories.

6.1.1 Making an Empty File Make a file with nothing in it.
6.1.2 Making a Directory Make a directory to put files in.
6.1.3 Making a Directory Tree Make an entire directory tree.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6. Files and Directories 83

The Linux Cookbook: Tips and Techniques for Everyday Use:
6.1.1 Making an Empty File

You may sometimes want to create a new, empty file as a kind of "placeholder." To do so, give the name th:
you want to use for the file as an argument to touch.

» To create the file "a_fresh_start' in the current directory, type:

$ touch a_fresh_start RET

 To create the file "another_empty_file' in the "work/completed' subdirectory of the
current directory, type:

$ touch work/completed/another_empty_file RET

This tool "touches" the files you give as arguments. If a file does not exist, it creates it; if the file already
exists, it changes the modification timestamp on the file to the current date and time, just as if you had used
the file.

NOTE: Often, you make a file when you edit it, such as when in a text or image or sound editor; in that case
you don't need to make the file first.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.1.2 Making a Directory

Use mkdir ("make directory") to make a new directory, giving the path name of the new directory as an
argument. Directory names follow the same conventions as used with other files——that is, no spaces, slashe
or other unusual characters are recommended.

» To make a new directory called "work' in the current working directory, type:

$ mkdir work RET

» To make a new directory called ‘work' in the “/tmp' directory, type:

$ mkdir /tmp/work RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6. Files and Directories 84

The Linux Cookbook: Tips and Techniques for Everyday Use:
6.1.3 Making a Directory Tree

Use mkdir with the “—p' option to make a subdirectory and any of its parents that do not already exist.
This is useful when you want to make a fairly complex directory tree from scratch, and don't want to have to
make each directory individually.

» To make the "work/completed/2001' directory——a subdirectory of the
“completed' directory, which in turn is a subdirectory of the "work' directory in the current
directory, type:

$ mkdir —p work/completed/2001 RET

This makes a 2001’ subdirectory in the directory called "completed’, which in turn is in a directory
called "work' in the current directory; if the "completed' or the "work' directories do not already

exist, they are made as well (if you know that "work' and "‘completed’ both exist, the above command
works fine without the "—p' option).

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.2 Changing Directories
Use cd to change the current working directory; give the name of the new directory as an argument.

» To change the current working directory to "work’, a subdirectory in the current directory, type:

$ cd work RET

» To change to the current directory's parent directory, type:
$cd.. RET
You can also give the full path name of a directory.
« To change the current working directory to “/usr/doc’, type:
$ cd /usr/doc RET

This command makes “/usr/doc' the current working directory.

6. Files and Directories 85

The Linux Cookbook: Tips and Techniques for Everyday Use:

6.2.1 Changing to Your Home Directory Changing to your home directory.
6.2.2 Changing to the Last Directory You Changing to the last directory you
Visited visited.
6.2.3 Getting the Name of the Current Getting the name of the current
Directory directory.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.2.1 Changing to Your Home Directory
With no arguments, cd makes your home directory the current working directory.

» To make your home directory the current working directory, type:

$cd RET

(<] [>] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.2.2 Changing to the Last Directory You Visited

To return to the last directory you were in, use cd and give "' as the directory name. For example, if you
are in the “/home/mrs/work/samples' directory, and you use cd to change to some other directory,

then at any point while you are in this other directory you can type cd - to return the current working
directory to “/home/mrs/work/samples'.

e To return to the directory you were last in, type:

$cd-RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.2.3 Getting the Name of the Current Directory

To determine what the current working directory is, use pwd ("print working directory"), which lists the full
path name of the current working directory.

6. Files and Directories 86

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To determine what the current working directory is, type:

$ pwd RET
/home/mrs
$

In this example, pwd output the text ‘/home/mrs’, indicating that the current working directory is
‘/home/mrs'.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.3 Listing Directories

@sf{Debian}: ‘mc'

@sf{Debian}: ‘mozilla’

@sf{WWW}: http://www.anome.ora/mc/

@sf{WWW}: http://www.mozilla.org/

Use Is to list the contents of a directory. It takes as arguments the names of the directories to list. With no

arguments, Is lists the contents of the current working directory.

* To list the contents of the current working directory, type:

$Is RET
apple cherry orange

In this example, the current working directory contains three files: “apple', “cherry', and “orange'.

* To list the contents of "work', a subdirectory in the current directory, type:

$ Is work RET

* To list the contents of the "/usr/doc’ directory, type:

$ Is /usr/doc RET

You cannot discern file types from the default listing; directories and executables are indistinguishable from
all other files. Using the "—F' option, however, tells Is to place a */' character after the names of
subdirectories and a "*' character after the names of executable files.

* To list the contents of the directory so that directories and executables are distinguished from other

6. Files and Directories 87

http://www.gnome.org/mc/
http://www.mozilla.org/

The Linux Cookbook: Tips and Techniques for Everyday Use:

files, type:

$Is -F RET
repeat* testl test2 words/
$

In this example, the current directory contains an executable file named ‘repeat’, a directory named
‘words', and some other files named “testl' and ‘test2'.

Another way to list the contents of directories——and one | use all the time, when I'm in X and when | also
want to look at image files in those directories——is to use Mozilla or some other Web browser as a local file
browser. Use the prefik6)file:/ to view local files. Alone, it opens a directory listing of the root directory;
file:/home/joe opens a directory listing of user jeehome directory, file:/usr/local/src opens the local source
code directory, and so on. Directory listings will be rendered in HTML on the fly in almost all browsers, so
you can click on subdirectories to traverse to them, and click on files to open them in the browser.

Yet another way to list the contents of directories is to use a "file manager" tool, of which there are at least a
few on Linux; the most popular of these is probably the "Midnight Commander," or mc.

The following subsections describe some commonly used options for controlling which files Is lists and
what information about those files Is outputs. It is one of the most often used file commands on Unix-like
systems.

6.3.1 Listing File Attributes Listing file attributes.

6.3.2 Listing Directories Recursively Listing directories and their subdirectories.
6.3.3 Listing Newest Files First Listing newest files first.

6.3.4 Listing Hidden Files Listing hidden or special files.

6.3.5 Listing Directories in Color Directory listings in color.

6.3.6 Listing Directory Tree Graphs Listing an entire directory tree.

6.3.7 Additional Directory Listing Options Popular options for the Is command.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.3.1 Listing File Attributes

Use Is with the "—I' ("long") option to output a more extensive directory listing——one that contains each
file's size in bytes, last modification time, file type, and ownership and permissions (see_section File

Ownership).

» To output a verbose listing of the “/usr/doc/bash’ directory, type:

6. Files and Directories 88

joe
src

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ Is =l /usr/doc/bash RET

total 72

—rw-r——r—— 1root root 13744 Oct 19 22:57 CHANGES.gz
—rw-r——r—— 1root root 1816 Oct 19 22:57 COMPAT.gz
—rw-r——r—— 1root root 16398 Oct 19 22:57 FAQ.gz
—rw-r——r—— 1root root 2928 Oct 19 22:57 INTRO.gz
—-rw-r——r—— 1root root 4751 Oct19 22:57 NEWS.gz
—-rw-r——r—— 1root root 1588 Oct 19 22:57 POSIX.NOTES.gz
—-rw-r——r—— 1lroot root 2718 Oct 19 22:57 README.Debian.gz
-rw-r——r—— 1lroot root 19596 Oct 19 22:57 changelog.gz
—-rw-r——r—— 1root root 1446 Oct 19 22:57 copyright
drwxr—xr-x 9root root 1024 Jul 25 1997 examples

$

This command outputs a verbose listing of the files in “/usr/doc/bash’. The first line of output gives
the total amount of disk space, in 1024-byte blocks, that the files take up (in this example, 72). Each
subsequent line displays several columns of information about one file.

The first column displays the file's type and permissions. The first character in this column specifies the file
type; the hyphen ("-') is the default and means that the file is a regular file. Directories are denoted by "d',
and symbolic links (see secti@iving a File More than One Name) are denoted by I'. The remaining nine
characters of the first column show the file permissions (see s€uimnolling Access to Files). The second
column lists the number of hard links to the file. The third and fourth columns give the names of the user anc
group that the file belongs to. The fifth column gives the size of the file in bytes, the sixth column gives the
date and time of last modification, and the last column gives the file name.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.3.2 Listing Directories Recursively

Use the "R’ option to list a directory recursively, which outputs a listing of that directory and all of its
subdirectories.

» To output a recursive directory listing of the current directory, type:

$Is-RRET
play work

play:
notes

work:

notes

$

In this example, the current working directory contains two subdirectories, “work' and “play’, and no
other files. Each subdirectory contains a file called “notes'.

6. Files and Directories 89

The Linux Cookbook: Tips and Techniques for Everyday Use:

* To list all of the files on the system, type:

$Is-R/RET

This command recursively lists the contents of the root directory, /', and all of its subdirectories. It is
common to combine this with the attribute option, "=I', to output a verbose listing of all the files on the
system:

$Is-IR/RET

NOTE: You can't list the contents of some directories on the system if you don't have permission to do so
(see sectioControlling Access to Files).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.3.3 Listing Newest Files First
Use the "—t' option with Is to sort a directory listing so that the newest files are listed first.

* To list all of the files in the “/usr/tmp' directory sorted with newest first, type:

$ Is —t fusr/tmp RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.3.4 Listing Hidden Files

By default, Is does not output files that begin with a period character ("."). To reduce clutter, many
applications "hide" configuration files in your home directory by giving them names that begin with a period;
these are called dot files, or sometimes "hidden" files. As mentioned earlier, every directory has two special
dot files: "..", the parent directory, and ".', the directory itself.

To list all contents of a directory, including these dot files, use the "-a' option.

* To list all files in the current directory, type:

$Is -aRET

6. Files and Directories 90

The Linux Cookbook: Tips and Techniques for Everyday Use:

Use the "—A' option to list almost all files in the directory: it lists all files, including dot files, with the
exception of *.."and ".".

* To list all files in the current directory except for °.." and ".', type:

$Is-ARET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.3.5 Listing Directories in Color

Use Is with the "——color' option to list the directory contents in color; files appear in different colors
depending on their content. Some of the default color settings include displaying directory names in blue, te:
files in white, executable files in green, and links in turquoise.

* To list the files in the root directory in color, type:

$ 1s ——color 7/

etc man usr
floppy mnt var
bin home proc
boot initrd root
cdrom lib sbin
dev lost+found tmp

|

NOTE: It's common practice to create a command alias that substitutes “Is ——color' for °Is’, so that
typing just Is outputs a color listing. To learn more about making aliasedaking a Command Alias.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.3.6 Listing Directory Tree Graphs

@sf{Debian}: “tree'
@sf{WWW}: ftp://mama.indstate.edu/linux/tree/
Use tree to output an ASCII text tree graph of a given directory tree.

6. Files and Directories 91

ftp://mama.indstate.edu/linux/tree/

The Linux Cookbook: Tips and Techniques for Everyday Use:
» To output a tree graph of the current directory and all its subdirectories, type:

$ tree RET
|-— projects
| |-— current
| ~—-old
| -1
| -2
T——trip
"—— schedule.txt

4 directories, 3 files
$

In the preceding example, a tree graph is drawn showing the current directory, which contains the two
directories “projects' and ‘trip'; the “projects' directory in turn contains the directories
“current' and “old'.

To output a tree graph of a specific directory tree, give the name of that directory tree as an argument.

« To output a tree graph of your home directory and all its subdirectories, type:

$ tree ~ RET

To output a graph of a directory tree containing directory names only, use the “—d' option. This is useful for
outputting a directory tree of the entire system, or for getting a picture of a particular directory tree.

» To output a tree graph of the entire system to the file “tree’, type:

$tree —d / 62; tree RET

» To peruse a tree graph of the “/usr/local' directory tree, type:

$ tree —d /usr/local |less RET

NOTE: Another tool for outputting directory trees is describedigting a File's Disk Usage.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.3.7 Additional Directory Listing Options

The Is tool has many options to control the files listed and the information given for each file; the following
table describes some of them. (The options are case sensitive.)

6. Files and Directories 92

The Linux Cookbook: Tips and Techniques for Everyday Use:

OPTION DESCRIPTION
——color Colorize the names of files depending on their type.

-R Produce a recursive listing.

-a List all files in a directory, including hidden, or "dot," files.

-d List directories by name instead of listing their contents.

—f Do not sort directory contents; list them in the order they are written on the disk.

= Produce a verbose listing.

-r Sort directory contents in reverse order.

-s Output the size——as an integer in 1K blocks——of each file to the left of the file name.
—t Sort output by timestamp instead of alphabetically, so the newest files are listed first.

NOTE: You can combine any of these options; for example, to list the contents of a directory sorted newest
first, and display all attributes, use "—It'. To recursively list all hidden files and display all attributes, use
"—IRa'. It doesn't matter what order you put the options in——so "-IRa' is the same as, say, -alR'.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.4 Copying Files and Directories

Use cp ("copy") to copy files. It takes two arguments: the source file, which is the existing file to copy, and
the target file, which is the file name for the new copy. cp then makes an identical copy of the source file,
giving it the specified target name. If a file with the target name already exists, cp overwrites it. It does not
alter the source file.

* To copy the file ‘'my—copy' to the file "'neighbor-copy’', type:

$ cp my—copy neighbor-copy RET
This command creates a new file called "neighbor—copy' that is identical to “my-copy' in every

respect except for its name, owner, group, and timestamp—-the new file has a timestamp that shows the tirr
when it was copied. The file ‘'my-copy' is not altered.

Use the "—p' ("preserve") option to preserve all attributes of the original file, including its timestamp,
owner, group, and permissions.

» To copy the file ‘'my—copy' to the file "neighbor—copy', preserving all of the attributes of the
source file in the target file, type:

$ cp —-p my-copy neighbor-copy RET

6. Files and Directories 93

The Linux Cookbook: Tips and Techniques for Everyday Use:

This command copies the file ‘'my-copy' to a new file called "neighbor—copy' that is identical to
‘my—copy' in every respect except for its name.

To copy a directory along with the files and subdirectories it contains, use the —R option——it makes a

recursive copy of the specified directory and its entire contents.

» To copy the directory “public_html', and all of its files and subdirectories, to a new directory
called “private_html', type:

$ cp —-R public_html private_html RET

The "—-R' option does not copy files that are symbolic links (see se@iiging a File More than One

Name), and it does not retain all original permissions. To recursively copy a directory including links, and
retain all of its permissions, use the "—a' ("archive™) option. This is useful for making a backup copy of a
large directory tree.

« To make an archive copy of the directory tree “public_html' to the directory
“private_html', type:

$ cp —a public_html private_html RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.5 Moving Files and Directories

Use the mv ("move") tool to move, or rename, a file or directory to a different location. It takes two
arguments: the name of the file or directory to move followed by the path name to move it to. If you move a
file to a directory that contains a file of the same name, the file is overwritten.

» To move the file "notes' in the current working directory to "../play’, type:

$ mv notes ../play RET

This command moves the file "notes' in the current directory to “play’, a subdirectory of the current
working directory's parent. If a file ‘notes' already exists in “play', that file is overwritten. If the
subdirectory “play' does not exist, this command moves "notes' to its parent directory and renames it

play'.

To move a file or directory that is not in the current directory, give its full path name as an argument.

6. Files and Directories 94

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To move the file “/usr/tmp/notes' to the current working directory, type:

$ mv /usr/tmp/notes . RET

This command moves the file “/usr/tmp/notes' to the current working directory.

To move a directory, give the path name of the directory you want to move and the path name to move it to
as arguments.

» To move the directory ‘work' in the current working directory to “play’, type:

$ mv work play RET

This command moves the directory "work' in the current directory to the directory “play'. If the
directory “play' already exists, mv puts ‘work' inside “play'-—-it does not overwrite directories.

Renaming a file is the same as moving it; just specify as arguments the file to rename followed by the new
file name.

» To rename the file "notes' to "notes.old’, type:

$ mv notes notes.old RET

6.5.1 Changing File Names to Lowercase Changing the case of a file.
6.5.2 Renaming Multiple Files with the Same Renaming multiple files at
Extension once.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.5.1 Changing File Names to Lowercase

@sfH{WWW}: http://eternity.2y.net/chcase
To change the uppercase letters in a file name to lowercase (or vice versa), use chcase. It takes as
arguments the files whose names it should change.

» To change the file names of all of the files in the current directory to lowercase letters, type:

$ chcase * RET

6. Files and Directories 95

http://eternity.2y.net/chcase

The Linux Cookbook: Tips and Techniques for Everyday Use:
Use the "-u' option to change file names to all uppercase letters.

» To change file names of all of the files with a ".dos' extension in the "~/tmp' directory to all
uppercase letters, type:

$ chcase —u ~/tmp/*.dos RET

By default, chcase does not rename directories; use the "—d' option to rename directories as well as other
files. The "—r' option recursively descends into any subdirectories and renames those files, too.

» To change all of the files and subdirectory names in the current directory to all lowercase letters,
type:

$ chcase -d * RET

» To change all of the files and subdirectory names in the current directory to all uppercase letters, an
descend recursively into all subdirectories, type:

$ chcase -d -r -u * RET

» To change all of the files in the current directory to all lowercase letters, and descend recursively intc
all subdirectories (but do not change any directory names), type:

$ chcase -r * RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.5.2 Renaming Multiple Files with the Same Extension

@sf{WWW}: http://eternity.2y.net/chcase
To give a different file name extension to a group of files that share the same file name extension, use

chcase with the "—x' option for specifying a Perl expression; give the patterns to match the source and
target files as a quoted argument.

For example, you can rename all file names ending in ".htm' to end in ".html' by giving
“s/htm/html/* as the expression to use.

» To rename all of the files in the current directory with a ".htm' extension to ".html', type:

6. Files and Directories 96

http://eternity.2y.net/chcase

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ chcase —x 's/htm/html/' *.htm' RET

By default, chcase will not overwrite files; so if you want to rename “index.htm' to “index.html’,
and both files already exist in the current directory, the above example will do nothing. Use the "—0' option
to specify that existing files may be overwritten.

» To rename all of the files in the current directory with a ~.htm' extension to ".html' and
overwrite any existing files, type:

$ chcase —o —x 's/htm/html/' *.htm' RET

NOTE: Renaming multiple files at once is a common request.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.6 Removing Files and Directories

Use rm ("remove") to delete a file and remove it from the system. Give the name of the file to remove as an
argument.

» To remove the file “notes' in the current working directory, type:

$ rm notes RET

To remove a directory and all of the files and subdirectories it contains, use the =R’ ("recursive") option.

» To remove the directory "waste' and all of its contents, type:

$rm -R waste RET

To remove an empty directory, use rmdir; it removes the empty directories you specify. If you specify a
directory that contains files or subdirectories, rmdir reports an error.

» To remove the directory "empty’, type:

$ rmdir empty RET

6.6.1 Removing a File with a Strange Name Removing files with strange names.

6. Files and Directories 97

The Linux Cookbook: Tips and Techniques for Everyday Use:

6.6.2 A Safe Way to Remove a File A safer way to remove files.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.6.1 Removing a File with a Strange Name

Files with strange characters in their names (like spaces, control characters, beginning hyphens, and so on)
pose a problem when you want to remove them. There are a few solutions to this problem.

One way is to use tab completion to complete the hame of the file (see tedfiion the Shell Complete

What You Type). This works when the name of the file you want to remove has enough characters to
uniquely identify it so that completion can work.

* To use tab completion to remove the file 'No Way' in the current directory, type:

$rm NoTAB Way RET

In the above example, after TAB was typed, the shell filled in the rest of the file name (" Way").

When a file name begins with a control character or other strange character, specify the file name with a file

name pattern that uniquely identifies it (see sec@pecifying File Names with Patterns, for tips on building
file name patterns). Use the "—i' option to verify the deletion.

» To delete the file “*Acat' in a directory that also contains the files “cat' and “dog’, type:

$rm —i ?cat RET
rm: remove MAcat'? y RET
$

In the above example, the expansion pattern “?cat' matches the file “*Acat' and no other files in the
directory. The "—i' option was used because, in some cases, no unique pattern can be made for a file——for
example, if this directory also contained a file called "1cat', the above rm command would also attempt to
remove it; with the "—i' option, you can answer n to it.

These first two methods will not work with files that begin with a hyphen character, because rm will interpret
such a file name as an option; to remove such a file, use the "——' option—-it specifies that what follows are
arguments and not options.

» To remove the file "—cat' from the current directory, type:

$rm-——--catRET

6. Files and Directories 98

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

6.6.2 A Safe Way to Remove a File

@sf{WWW}: ftp://ftp.wg.omron.co.jp/pub/unix—fag/docs
@sf{WWW}: http://dsl.ora/compltinyutils/

Once a file is removed, it is permanently deleted and there is no command you can use to restore it; you
cannot "undelete" it. (Although if you can unmount the filesystem that contained the file immediately after
you deleted the file, a wizard might be able to help reconstruct the lost file by using grep to search the
filesystem device file.)

A safer way to remove files is to use del, which is simply an alias to rm with the "—i' option. This
specifies for rm to run in interactive mode and confirm the deletion of each file. It may be good practice to
get in the habit of using del all the time, so that you don't make an accidental slip and rm an important file.

NOTE: Question 3.6 in the Unix FAQ (see "/usr/doc/FAQ/unix—fag—part3") discusses this issue,
and gives a shell script called can that you can use in place of rm——-it puts files in a "trashcan" directory
instead of removing them; you then periodically empty out the trashcan with rm.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.7 Giving a File More than One Name

Links are special files that point to other files; when you act on a file that is a link, you act on the file it points
to. There are two kinds of links: hard links and symbolic links. A hard link is another name for an existing
file; there is no difference between the link and the original file. So if you make a hard link from file

“foo' to file “bar', and then remove file “bar’, file foo' is also removed. Each file has at least one

hard link, which is the original file name itself. Directories always have at least two hard links——the directory
name itself (which appears in its parent directory) and the special file "." inside the directory. Likewise,

when you make a new subdirectory, the parent directory gains a new hard link for the special file

".." inside the new subdirectory.

A symbolic link (sometimes called a "symlink" or "soft link") passes most operations——such as reading and
writing——to the file it points to, just as a hard link does. However, if you remove a symlink, you remove only
the symlink itself, and not the original file.

Use In ("link") to make links between files. Give as arguments the name of the source file to link from and
the name of the new file to link to. By default, In makes hard links.

* To create a hard link from “seattle' to "emerald-city', type:

6. Files and Directories 99

ftp://ftp.wg.omron.co.jp/pub/unix-faq/docs
http://dsl.org/comp/tinyutils/

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ In seattle emerald—city RET

This command makes a hard link from an existing file, “seattle’, to a new file, “‘emerald—city"'.
You can read and edit file “"emerald—city' just as you would “seattle'; any changes you make to
“emerald—city' are also written to “seattle' (and vice versa). If you remove the file
“emerald—city’, file “seattle' is also removed.

To create a symlink instead of a hard link, use the "-s' option.

» To create a symbolic link from “seattle' to “emerald—city', type:

$ In —s seattle emerald-city RET

After running this command, you can read and edit "'emerald—city'; any changes you make to
“emerald-—city' will be written to “seattle' (and vice versa). But if you remove the file
“emerald-city’, the file “seattle’ will not be removed.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.8 Specifying File Names with Patterns

The shell provides a way to construct patterns, called file name expansions, that specify a group of files. Yo
can use them when specifying file and directory names as arguments to any tool or application.

The following table lists the various file expansion characters and their meaning.

CHARACTER DESCRIPTION

* The asterisk matches a series of zero or more characters, and is sometimes called the
"wildcard" character. For example, * alone matches all file names, a* matches all file
names that consist of an "a' character followed by zero or more characters, and
a*b matches all file names that begin with an “a' character and end with a "b' character,
with any (or no) characters in between.

? The question mark matches exactly one character. Therefore, ? alone matches all file names
with exactly one character, ?? matches all file names with exactly two characters, and
a? matches any file name that begins with an "a' character and has exactly one character

following it.

[list] Square brackets match one character in list. For example, [ab] matches exactly two file
names: "a' and "b'. The pattern c[io] matches “ci' and "co', but no other file
names.

~ The tilde character expands to your home directory. For example, if your username is
joe and therefore your home directory is “/home/joe’, then “~' expands to
‘/homeljoe’. You can follow the tilde with a path to specify a file in your home
directory——for example, “~/work' expands to “/home/joe/work'.

6. Files and Directories 100

The Linux Cookbook: Tips and Techniques for Everyday Use:

Brackets also have special meaning when used in conjunction with other characters, as described by the
following table.

CHARACTER DESCRIPTION

- A hyphen as part of a bracketed list denotes a range of characters to match——so
[a—m] matches any of the lowercase letters from "a' through "'m'. To match a literal
hyphen character, use it as the first or last character in the list. For example,
a[-bJc matches the files "a—c' and "abc'.

! Put an exclamation point at the beginning of a bracketed list to match all characters
except those listed. For example, a[!b]Jc matches all files that begin with an
‘a’' character, end with a “c' character, and have any one character, except a
“b' character, in between; it matches “aac', "a—c', "adc', and so on.

You can combine these special expansion characters in any combination, and you can specify more than or
pattern as multiple arguments. The following examples show file expansion in action using commands
described in this chapter.

* To list all files in the “/usr/bin’ directory that have the text “tex' anywhere in their name,
type:

$ Is /usr/bin/*tex* RET

» To copy all files whose names end with ".txt' to the "doc' subdirectory, type:

$ cp *.txt doc RET

» To output a verbose listing of all files whose names end with either a ".txt' or
“.text' extension, sorting the list so that newer files are listed first, type:

$ Is —It *.txt *.text RET

» To move all files in the “/usr/tmp' directory whose names consist of the text “song' followed
by an integer from 0 to 9 and a ".cdda’' extension, placing them in a directory "music' in your
home directory, type:

$ mv /usr/tmp/song[0-9].cdda ~/music RET

» To remove all files in the current working directory that begin with a hyphen and have the text
“out' somewhere else in their file name, type:

$rm —— —*out* RET

» To concatenate all files whose names consist of an "a' character followed by two or more
characters, type:

6. Files and Directories 101

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ cat a??* RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6.9 Browsing Files
You can view and peruse local files in a Web browser, such as the text—only browser lynx or the graphical
Mozilla browser for X.

The lynx tool is very good for browsing files on the system—-—give the name of the directory to browse, and
lynx will display a listing of available files and directories in that directory.

You can use the cursor keys to browse and press RET on a subdirectory to traverse to that directory;
lynx can display plain text files, compressed text files, and files written in HTML; it's useful for browsing

system documentation in the “/usr/doc' and “/usr/share/doc' directories, where many software
packages come with help files and manuals written in HTML.

* To browse the system documentation files in the “/usr/doc’ directory, type:

$ lynx /usr/doc RET

For more about using lynx seeReading Text from the Web.
With Mozilla and some other browsers you must precede the full path name with the “file:/' URN—-so

the “/usr/doc' directory would be “file://usr/doc'. With lynx, just give a local path name as an
argument.

» To browse the system documentation files in the “/usr/doc' directory in Mozilla, type the
following in Mozilla's Location window:

file://lusr/doc

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

6. Files and Directories 102

7. Sharing Files

Groups, file ownership, and access permissions are Linux features that enable users to share files with one
another. But even if you don't plan on sharing files with other users on your system, familiarity with these
concepts will help you understand how file access and security work in Linux.

7.1 Groups and How to Work in Them How users can work together in groups.

7.2 File Ownership Who owns a file?
7.3 Controlling Access to Files Who has permission to access a file?
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

7.1 Groups and How to Work in Them

A group is a set of users, created to share files and to facilitate collaboration. Each member of a group can
work with the group's files and make new files that belong to the group. The system administrator can add
new groups and give users membership to the different groups, according to the users' organizational need:
For example, a system used by the crew of a ship might have groups such as galley, deck, bridge, and
crew; the user captain might be a member of all the groups, but user steward might be a member of

only the galley and crew groups.

On a Linux system, you're always a member of at least one group: your login group. You are the only
member of this group, and its group name is the same as your username.

Let's look at how to manage your group memberships.

7.1.1 Listing the Groups a User Belongs To Listing the groups a user is a member of.

7.1.2 Listing the Members of a Group Listing the members of a group.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

7.1.1 Listing the Groups a User Belongs To

To list a user's group memberships, use the groups tool. Give a username as an argument, and
groups outputs a line containing that username followed by all of the groups the user is a member of. With
no arguments, groups lists your own username and group memberships.

7. Sharing Files 103

The Linux Cookbook: Tips and Techniques for Everyday Use:

* To list your group memberships, type:

$ groups RET
steward galley crew
$

In this example, three groups are output: steward (the user's login group), galley, and crew.

« To list the group memberships of user blackbeard, type:

$ groups blackbeard RET
blackbeard : blackbeard
$

In this example, the command outputs the given username, blackbeard, followed by the name of one
group, blackbeard, indicating that user blackbeard belongs to only one group: his login group.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7.1.2 Listing the Members of a Group

@sf{Debian}: ‘'members’
To list the members of a particular group, use the members tool, giving the name of the particular group as
an argument.

» To output a list of the members of the galley group, type:

$ members galley RET
captain steward pete
$

In this example, three usernames are output, indicating that these three users are the members of the
galley group.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7. Sharing Files 104

The Linux Cookbook: Tips and Techniques for Everyday Use:

7.2 File Ownership

Every file belongs to both a user and a group——usually to the user who created it and to the group the user
was working in at the time (which is almost always the user's login group). File ownership determines the
type of access users have to particular files (see sé@tiomolling Access to Files).

7.2.1 Determining the Ownership of a File Who owns a file?
7.2.2 Changing the Ownership of a File Changing file ownership.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

7.2.1 Determining the Ownership of a File

To find out which user and group own a particular file, use Is with the “—I' option to list the file's
attributes (see sectidusting File Attributes). The name of the user who owns the file appears in the third
column of the output, and the name of the group that owns the file appears in the fourth column.

For example, suppose the verbose listing for a file called “cruise' looks like this:

—TWXIrwW—r—— 1 captain crew 8,420 Jan 12 21:42 cruise

The user who owns this file is captain, and the group that owns it is crew.

NOTE: When you create a file, it normally belongs to you and to your login group, but you can change its
ownership, as described in the next recipe. You normally own all of the files in your home directory.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7.2.2 Changing the Ownership of a File

You can't give away a file to another user, but other users can make copies of a file that belongs to you,
provided they have read permission for that file (see seCiortrolling Access to Files). When you make a
copy of another user's file, you own the copy.

You can also change the group ownership of any file you own. To do this, use chgrp; it takes as arguments

the name of the group to transfer ownership to and the names of the files to work on. You must be a membe
of the group you want to give ownership to.

7. Sharing Files 105

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To change the group ownership of file “cruise' to bridge, type:

$ chgrp bridge cruise RET

This command transfers group ownership of “cruise' to bridge; the file's group access permissions (see
sectionControlling Access to Files) now apply to the members of the bridge group.

Use the "—R' option to recursively change the group ownership of directories and all of their contents.

 To give group ownership of the ‘'maps' directory and all the files it contains to the bridge group,
type:

$ chgrp —R bridge maps RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7.3 Controlling Access to Files

Each file has permissions that specify what type of access to the file users have. There are three kinds of
permissions: read, write, and execute. You need read permission for a file to read its contents,
write permission to write changes to or remove it, and execute permission to run it as a program.

Normally, users have write permission only for files in their own home directories. Only the superuser has
write permission for the files in important directories, such as “/bin' and “/etc'-—-so as a regular user,
you never have to worry about accidentally writing to or removing an important system file.

Permissions work differently for directories than for other kinds of files. Read permission for a directory
means that you can see the files in the directory; write permission lets you create, move, or remove files in
the directory; and execute permission lets you use the directory name in a path (se€itectod

Directories).

If you have read permission but not execute permission for a directory, you can only read the names of files
in that directory——you can't read their other attributes, examine their contents, write to them, or execute ther
With execute but not read permission for a directory, you can read, write to, or execute any file in the
directory, provided that you know its name and that you have the appropriate permissions for that file.

Each file has separate permissions for three categories of users: the user who owns the file, all other memb
of the group that owns the file, and all other users on the system. If you are a member of the group that own
a file, the file's group permissions apply to you (unless you are the owner of the file, in which case the user
permissions apply to you).

When you create a new file, it has a default set of permissions——usually read and write for the user, and rea

for the group and all other users. (On some systems, the default permissions are read and write for both the
user and group, and read for all other users.)

7. Sharing Files 106

The Linux Cookbook: Tips and Techniques for Everyday Use:

The file access permissions for a file are collectively called its access mode. The following sections describe
how to list and change file access modes, including how to set the most commonly used access modes.

NOTE: The superuser, root, can always access any file on the system, regardless of its access permissions
See Info file “fileutils.info', node "File permissions', for more information on file permissions and access

modes.

7.3.1 Listing the Permissions of a File Listing the permissions a file has.
7.3.2 Changing the Permissions of a File Changing the permissions on a file.

7.3.3 Write—Protecting a File Write—protecting a file.
7.3.4 Making a File Private Making a file for private use.
7.3.5 Making a File Public Making a file for public use.
7.3.6 Making a File Executable Making a file executable.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

7.3.1 Listing the Permissions of a File

To list a file's access permissions, use Is with the "—lbption (see sectiohisting File Attributes). File
access permissions appear in the first column of the output, after the character for file type.

For example, consider the verbose listing of the file "cruise":

—-rwxrw-r—— 1 captain crew 8,420 Jan 12 21:42 cruise

The first character ("-') is the file type; the next three characters (‘rwx') specify permissions for the user
who owns the file; and the next three (‘rw-") specify permissions for all members of the group that owns
the file except for the user who owns it. The last three characters in the column (‘r—-") specify permissions
for all other users on the system.

All three permissions sections have the same format, indicating from left to right, read, write, and execute
permission with °r', "w', and "x' characters. A hyphen ("-") in place of one of these letters indicates that
permission is not given.

In this example, the listing indicates that the user who owns the file, captain, has read, write, and execute
permission, and the group that owns the file, crew, has read and write permission. All other users on the
system have only read permission.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7. Sharing Files 107

The Linux Cookbook: Tips and Techniques for Everyday Use:
7.3.2 Changing the Permissions of a File

To change the access mode of any file you own, use the chmod ("change mode") tool. It takes two
arguments: an operation, which specifies the permissions to grant or revoke for certain users, and the name
of the files to work on.

To build an operation, first specify the category or categories of users as a combination of the following
characters:

CHARACTER CATEGORY

u The user who owns the file.

g All other members of the file's group.

o] All other users on the system.

a All users on the system); this is the same as "ugo'.

Follow this with the operator denoting the action to take:

OPERATORACTION

+ Add permissions to the user's existing permissions.

- Remove permissions from the user's existing permissions.
= Make these the only permissions the user has for this file.

Finally, specify the permissions themselves:

CHARACTER PERMISSION

r Set read permission.
w Set write permission.
X Set execute permission.

For example, use "u+w' to add write permission to the existing permissions for the user who owns the file,
and use "a+rw' to add both read and write permissions to the existing permissions of all users. (You could
also use ‘ugo+rw' instead of "a+rw'.)

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7.3.3 Write—Protecting a File

If you revoke users' write permissions for a file, they can no longer write to or remove the file. This
effectively "write—protects" a file, preventing accidental changes to it. A write—protected file is sometimes
called a "read only" file.

To write—protect a file so that no users other than yourself can write to it, use chmod with ‘go-w" as the

7. Sharing Files 108

The Linux Cookbook: Tips and Techniques for Everyday Use:

operation.

» To write—protect the file “cruise' so that no other users can change it, type:

$ chmod go-w cruise RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7.3.4 Making a File Private

To make a file private from all other users on the system, use chmod with "go="as the operation. This
revokes all group and other access permissions.

» To make the file “cruise' private from all users but yourself, type:

$ chmod go= cruise RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

7.3.5 Making a File Public

To allow anyone with an account on the system to read and make changes to a file, use chmod with
“a+rw' as the operation. This grants read and write permission to all users, making the file "public.”" When
a file has read permission set for all users, it is called world readable, and when a file has write permission
set for all users, it is called world writable.

« To make the file “cruise' both world readable and world writable, type:

$ chmod a+rw cruise RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7. Sharing Files 109

The Linux Cookbook: Tips and Techniques for Everyday Use:

7.3.6 Making a File Executable

An executable file is a file that you can run as a program. To change the permissions of a file so that all use
can run it as a program, use chmod with "a+x' as the operation.

» To give execute permission to all users for the file “‘myscript’, type:

$ chmod a+x myscript RET

NOTE: Often, shell scripts that you obtain or write yourself do not have execute permission set, and you'll
have to do this yourself.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

7. Sharing Files 110

8. Finding Files

Sometimes you will need to find files on the system that match given criteria, such as name and file size. Th
chapter will show you how to find a file when you know only part of the file name, and how to find a file
whose nhame matches a given pattern. You will also learn how to list files and directories by their size and to
find the locations of commands.

NOTE: When you want to find files in a directory whose contents match a particular pattern, search through
the files with grep———seeSearching Text. A method of searching for a given pattern in the contents of files
in different directories is given iRunning Commands on the Files You Find.

See Info file “find.info', node “Top', for more information on finding files.

8.1 Finding All Files That Match a Pattern Quickly locating files that match a pattern.

8.2 Finding Files in a Directory Tree The find tool is for finding files.
8.3 Finding Files in Directory Listings Finding files in directory listings.

8.4 Finding Where a Command Is Located Locating a command.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

8.1 Finding All Files That Match a Pattern

The simplest way to find files is with GNU locate. Use it when you want to list all files on the system
whose full path name matches a particular pattern——for example, all files with the text “audio’ somewhere
in their full path name, or all files ending with “0gg'; locate outputs a list of all files on the system that
match the pattern, giving their full path name. When specifying a pattern, you can use any of the file name

expansion characters (see secfmecifying File Names with Patterns).

* To find all the files on the system that have the text "audio' anywhere in their name, type:

$ locate audio RET

 To find all the files on the system whose file names end with the text “ogg', type:

$ locate *ogg RET

* To find all hidden "dotfiles" on the system, type:

8. Finding Files 111

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ locate /. RET

NOTE:locate searches are not case sensitive.

Sometimes, a locate search will generate a lot of output. Pipe the output to less to peruse it (see section
Perusing Text).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.2 Finding Files in a Directory Tree

Use find to find specific files in a particular directory tree, specifying the name of the directory tree to
search, the criteria to match, and——optionally——the action to perform on the found files. (Unlike most other
tools, you must specify the directory tree argument before any other options.)

You can specify a number of search criteria, and format the output in various ways; the following sections
include recipes for the most commonly used find commands, as well as a list of find's most popular
options.

8.2.1 Finding Files in a Directory Tree by Name The basic find options.
8.2.2 Finding Files in a Directory Tree by Size Finding files by size.

8.2.3 Finding Files in a Directory Tree hy Finding files by date.
Modification Time

8.2.4 Finding Files in a Directory Tree by Owner Finding files by owner.

8.2.5 Running Commands on the Files You Find Running commands on the files
you find.

8.2.6 Finding Files by Multiple Criteria A list of find's many options.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

8.2.1 Finding Files in a Directory Tree by Name

Use find to find files in a directory tree by name. Give the name of the directory tree to search through, and
use the "—name' option followed by the name you want to find.

* To list all files on the system whose file name is “top’, type:

$ find / —name top RET

8. Finding Files 112

The Linux Cookbook: Tips and Techniques for Everyday Use:

This command will search all directories on the system to which you have access; if you don't have
execute permission for a directory, find will report that permission is denied to search the directory.

The "—name' option is case sensitive; use the similar ~—iname' option to find name regardless of case.

* To list all files on the system whose file name is “top', regardless of case, type:

$ find / —iname top RET

This command would match any files whose name consisted of the letters “top', regardless of
case—-including "Top', ‘top', and "TOP'.

Use file expansion characters (see sec@pecifying File Names with Patterns) to find files whose names
match a pattern. Give these file name patterns between single quotes.

* To list all files on the system whose names begin with the characters "top', type:

$ find / —-name 'top*' RET

* To list all files whose names begin with the three characters “top' followed by exactly three more
characters, type:

$ find / —-name 'top???' RET

* To list all files whose names begin with the three characters “top' followed by five or more
characters, type:

* To list all files in your home directory tree that end in ".tex', regardless of case, type:

$ find ~ —iname "*.tex' RET

* To list all files in the “/usr/share’ directory tree with the text ‘farm' somewhere in their
name, type:

$ find /usr/share —name *farm* RET

Use "—regex' in place of "—name' to search for files whose names match a regular expression, or a
pattern describing a set of strings (see se®iegular Expressions——Matching Text Patterns).

* To list all files in the current directory tree whose names have either the string “net' or

8. Finding Files 113

The Linux Cookbook: Tips and Techniques for Everyday Use:

“‘comm' anywhere in their file names, type:

$ find . —regex "*\(net\|comm\).* RET

NOTE: The "—regex' option matches the whole path name, relative to the directory tree you specify, and
not just file names.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

8.2.2 Finding Files in a Directory Tree by Size

To find files of a certain size, use the "—size' option, following it with the file size to match. The file size
takes one of three forms: when preceded with a plus sign ("+'), it matches all files greater than the given
size; when preceded with a hyphen or minus sign ("-'), it matches all files less than the given size; with
neither prefix, it matches all files whose size is exactly as specified. (The default unit is 512-byte blocks;
follow the size with “k' to denote kilobytes or “b' to denote bytes.)

* To list all files in the “/usr/local' directory tree that are greater than 10,000 kilobytes in size,
type:

$ find /usr/local —size +10000k RET

* To list all files in your home directory tree less than 300 bytes in size, type:

$ find ~ —size —300b RET

* To list all files on the system whose size is exactly 42 512-byte blocks, type:

$ find / —size 42 RET

Use the "—empty' option to find empty files——files whose size is 0 bytes. This is useful for finding files
that you might not need, and can remove.

* To find all empty files in your home directory tree, type:

$ find ~ —empty RET

NOTE: To find the largest or smallest files in a given directory, output a sorted listing of that directory (see
sectionFinding Files in Directory Listings).

8. Finding Files 114

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.2.3 Finding Files in a Directory Tree by Modification Time

To find files last modified during a specified time, use find with the "—mtime’ or "~mmin’ options; the
argument you give with "—mtime' specifies the number of 24—hour periods, and with "—mmin’ it specifies
the number of minutes.

* To list the files in the “/usr/local’ directory tree that were modified exactly 24 hours ago, type:

$ find /usr/local -mtime 1 RET

* To list the files in the “/usr' directory tree that were modified exactly five minutes ago, type:

$ find /usr —-mmin 5 RET

To specify a range of time, precede the number you give with either a plus sign ("+') to match times that are
equal to or greater than the given argument, or a hyphen or minus sign ("-') to match times that are equal tc
or less than the given argument.

* To list the files in the “/usr/local' directory tree that were modified within the past 24 hours,
type:

$ find /usr/local -mtime -1 RET

* To list the files in the “/usr' directory tree that were modified within the past five minutes, type:

$ find /Jusr —-mmin -5 RET

Include the "—daystart' option to measure time from the beginning of the current day instead of 24 hours
ago.

* To list all of the files in your home directory tree that were modified yesterday, type:

$ find ~ -mtime 1 —daystart RET

* To list all of the files in the “/usr' directory tree that were modified one year or longer ago, type:

$ find /usr -mtime +356 —daystart RET

8. Finding Files 115

The Linux Cookbook: Tips and Techniques for Everyday Use:

« To list all of the files in your home directory tree that were modified from two to four days ago, type:

$ find ~ -mtime 2 -mtime -4 —daystart RET

In the preceding example, the combined options "—mtime 2' and "-mtime —4' matched files that were
modified between two and four days ago.

To find files newer than a given file, give the name of that file as an argument to the "—newer" option.

* To find files in the “/etc' directory tree that are newer than the file “/etc/motd’, type:

$ find /etc —newer /etc/motd RET

To find files newer than a given date, use the trick described in the find Info documentation: create a
temporary file in “/tmp" with touch whose timestamp is set to the date you want to search for, and then
specify that temporary file as the argument to "—newer".

* To list all files in your home directory tree that were modified after May 4 of the current year, type:

$ touch -t 05040000 /tmp/timestamp RET
$ find ~ —newer /tmp/timestamp RET

In this example, a temporary file called “/tmp/timestamp’ is written; after the search, you can remove it
(see sectioRemoving Files and Directories).

NOTE: You can also find files that were last accessed a number of days after they were modified by giving
that number as an argument to the "—used' option. This is useful for finding files that get little use——files
matching "—used +100', say, were accessed 100 or more days after they were last modified.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.2.4 Finding Files in a Directory Tree by Owner

To find files owned by a particular user, give the username to search for as an argument to the
“—user' option.

* To list all files in the “/usr/local/fonts' directory tree owned by the user warwick, type:

$ find /usr/local/fonts —user warwick RET

The “—group' option is similar, but it matches group ownership instead of user ownership.

8. Finding Files 116

The Linux Cookbook: Tips and Techniques for Everyday Use:

« To list all files in the “/deV' directory tree owned by the audio group, type:

$ find /dev —group audio RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

8.2.5 Running Commands on the Files You Find

You can also use find to execute a command you specify on each found file, by giving the command as an
argument to the "—exec' option. If you use the string “'{}" in the command, this string is replaced with

the file name of the current found file when the command executes. Mark the end of the command with the
string ;"

* To find all files in the "~/html/* directory tree with an ".html" extension, and output lines
from these files that contain the string “organic', type:

$ find ~/html/ —name "*.html' —exec grep organic '{}' ';' RET

In this example, the command grep organic file is executed for each file that find finds, with
file being the name of each file in turn.

To have find pause and confirm execution for each file it finds, use "—ok' instead of "—exec'.

» To remove files from your home directory tree that were accessed more than one year after they wel
last modified, pausing to confirm before each removal, type:

$ find ~ —used +365 —ok rm '{}' ';' RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

8.2.6 Finding Files by Multiple Criteria
You can combine many of find's options to find files that match multiple criteria.

* To list files in your home directory tree whose names begin with the string “top', and that are
newer than the file “/etc/motd', type:

$ find ~ —name 'top*' —newer /etc/motd RET

8. Finding Files 117

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To compress all the files in your home directory tree that are two megabytes or larger, and that are
not already compressed with gzip (having a ".gz' file name extension), type:

$ find ~ —size +2000000c —-regex "*[*gz] —exec gzip '{}' ;' RET

The following tables describe many other options you can use with find. The first table lists and describes
find's general options for specifying its behavior. As you will see, find can take many different options;
see its man page or its info documentation for all of them.

OPTION DESCRIPTION

—daystart Use the beginning of today rather than 24 hours previous for time criteria.

—depth Search the subdirectories before each directory.

—help Output a help message and exit.

—-maxdepth Specify the maximum number of directory levels to descend in the specified directory
levels tree.

—-mountor-xdev Do not descend directories that have another disk mounted on them.

-version Output the version number and exit.

The following table lists and describes find's options for specifying which files to find.

Specify the numeric arguments to these options in one of three ways: preceded with a plus sign ('+') to
match values equal to or greater than the given argument; preceded with a hyphen or minus sign ("-') to
match values equal to or less than the given argument; or give the number alone to match exactly that value

OPTION DESCRIPTION

—amin Time in minutes since the file was last accessed.

minutes

—anewer File was accessed more recently than file.

file

—atime Time in days since the file was last accessed.

days

—cmin Time in minutes since the file was last changed.

minutes

—-cnewer File was changed more recently than file.

file

—ctime Days since the file was last changed.

days

—empty File is empty.

—group Name of the group that owns file.

group

—-iname Case-insensitive file name pattern to match (‘report' matches the files "Report’,
pattern ‘report’, 'REPORT!, etc.).

—ipath Full path name of file matches the pattern pattern, regardless of case ("./r*rt' matches
pattern “.Irecords/report' and "./Record-Labels/ART".

8. Finding Files 118

—iregex
regexp

—links
links
—mmin
minutes

-mtime
days

—nhame
pattern

—-newer file

—path
pattern

-perm
access
mode

-regex
regexp

—size size

—type type

—user user

The Linux Cookbook: Tips and Techniques for Everyday Use:

Path name of file, relative to specified directory tree, matches the regular expression regexp,
regardless of case (‘t?p' matches "TIP' and “top").

Number of links to the file (see secti@iving a File More than One Name).
Number of minutes since the file's data was last changed.

Number of days since the file's data was last changed.

Base name of the file matches the pattern pattern.

File was modified more recently than file.

Full path name of file matches the pattern pattern ("./r*rt" matches
“./records/report’).

File's permissions are exactly access moggee sectioontrolling Access to Files).

Path name of file, relative to specified directory tree, matches the regular expression regexp.

File uses size space, in 512-byte blocks. Append size with “b' for bytes or k' for
kilobytes.

File is type type, where type can be "d' for directory, “f' for regular file, or "I' for
symbolic link.

File is owned by user.

The following table lists and describes find's options for specifying what to do with the files it finds.

OPTION

—-exec
commands

-ok
commands

—print

—printf
format

DESCRIPTION

Specifies commands, separated by semicolons, to be executed on matching files. To specify
the current file name as an argument to a command, use '{}'.

Like "—exec' but prompts for confirmation before executing commands.

Outputs the name of found files to the standard output, each followed by a newline character
so that each is displayed on a line of its own. On by default.

Use "C-style" output (the same as used by the printf function in the C programming
language), as specified by string format.

The following table describes the variables may be used in the format string used by the
“—printf' option.

VARIABLE
\a

\b

\f

\n

8. Finding Files

DESCRIPTION

Ring the system bell (called the "alarm" on older systems).
Output a backspace character.

Output a form feed character.

Output a newline character.

119

The Linux Cookbook: Tips and Techniques for Everyday Use:

\r Output a carriage return.

\t Output a horizontal tab character.

\\ Output a backslash character.

%% Output a percent sign character.

%b Output file's size, rounded up in 512-byte blocks.

%f Output base file name.

%h Output the leading directories of file's name.

%k Output file's size, rounded up in 1K blocks.

%s Output file's size in bytes.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.3 Finding Files in Directory Listings

The following recipes show how to find the largest and smallest files and directories in a given directory or
tree by listing them by size. They also show how to find the number of files in a given directory.

8.3.1 Finding the Largest Files in a Directory Finding the largest files.
8.3.2 Finding the Smallest Files in a Directory Finding the smallest files.

8.3.3 Finding the Smallest Directories Finding the largest directories.
8.3.4 Finding the Largest Directories Finding the smallest directories.

8.3.5 Finding the Number of Files in a Listing Counting the number of files you find.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.3.1 Finding the Largest Files in a Directory

To find the largest files in a given directory, use Is to list its contents with the “=S' option, which sorts files
in descending order by their size (normally, Is outputs files sorted alphabetically). Include the "-I' option
to output the size and other file attributes.

« To list the files in the current directory, with their attributes, sorted with the largest files first, type:

$Is -ISRET

8. Finding Files 120

The Linux Cookbook: Tips and Techniques for Everyday Use:

NOTE: Pipe the output to lessto peruse it (see secti®erusing Text).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.3.2 Finding the Smallest Files in a Directory

To list the contents of a directory with the smallest files first, use Is with both the "=S' and "—r' options,
which reverses the sorting order of the listing.

* To list the files in the current directory and their attributes, sorted from smallest to largest, type:

$Is -ISr RET

(<] [>] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.3.3 Finding the Smallest Directories

To output a list of directories sorted by their size—-the size of all the files they contain——use du and sort.
The du tool outputs directories in ascending order with the smallest first; the "—S' option puts the size in
kilobytes of each directory in the first column of output. Give the directory tree you want to output as an
option, and pipe the output to sort with the "—n' option, which sorts its input numerically.

« To output a list of the subdirectories of the current directory tree, sorted in ascending order by size,
type:

$du-S.|sort-nRET

(<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.3.4 Finding the Largest Directories

Use the "—r' option with sort to reverse the listing and output the largest directories first.

» To output a list of the subdirectories in the current directory tree, sorted in descending order by size,
type:

8. Finding Files 121

The Linux Cookbook: Tips and Techniques for Everyday Use:
$du-S.|sort-nr RET

« To output a list of the subdirectories in the “/usr/local' directory tree, sorted in descending
order by size, type:

$ du -S /usr/local | sort —nr RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.3.5 Finding the Number of Files in a Listing

To find the number of files in a directory, use Is and pipe the output to “wc —I', which outputs the number
of lines in its input (see secti@punting Text).

» To output the number of files in the current directory, type:

$Is|wc -I RET
19
$

In this example, the command outputs the text "19', indicating that there are 19 files in the current
directory.

Since Is does not list hidden files by default (see sectisting Hidden Files), the preceding command does

not count them. Use Is's "—A' option to count dot files as well.

* To count the number of files——including dot files——in the current directory, type:

$1s-A|wc -I RET
81
$

This command outputs the text '81', indicating that there are 81 files, including hidden files, in the current
directory.

To list the number of files in a given directory tree, and not just a single directory, use find instead of Is,
giving the special find predicate "\! —type d' to exclude the listing (and therefore, counting) of
directories.

* To list the number of files in the “/usr/share' directory tree, type:

8. Finding Files 122

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ find /usr/share \! -type d | wc - RET

« To list the number of files and directories in the “/usr/share’ directory tree, type:

$ find /usr/share | we -| RET

* To list the number of directories in the “/usr/share’ directory tree, type:

$ find /usr/share \! -type f | wc —=| RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

8.4 Finding Where a Command Is Located

Use which to find the full path name of a tool or application from its base file name; when you give the base
file name as an option, which outputs the absolute file name of the command that would have run had you
typed it. This is useful when you are not sure whether or not a particular command is installed on the systen

 To find out whether perl is installed on your system, and, if so, where it resides, type:

$ which perl RET
[usr/bin/perl

In this example, which output “/usr/bin/perl’, indicating that the perl binary is installed in the
“lusr/bin’ directory.

NOTE: This is also useful for determining "which" binary would execute, should you type the name, since
some systems may have different binaries of the same file name located in different directories. In that case

you can use which to find which one would execute.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

8. Finding Files 123

9. Managing Files

File management tools include those for splitting, comparing, and compressing files, making backup
archives, and tracking file revisions. Other management tools exist for determining the contents of a file, anc
for changing its timestamp.

9.1 Determining File Type and Format Determining what kind of data is in a file.

9.2 Changing File Madification Time Changing file timestamps.
9.3 Splitting a File into Smaller Ones Splitting a file into smaller files.

9.4 Comparing Files Compare a group of files for similarities.

9.5 Compressed Files Compressing and expanding files.

9.6 File Archives All about file archives.

9.7 Tracking Revisions to a File Tracking the revisions you make to a file.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

9.1 Determining File Type and Format

When we speak of a file's type, we are referring to the kind of data it contains, which may include text,
executable commands, or some other data; this data is organized in a particular way in the file, and this
organization is called its format. For example, an image file might contain data in the JPEG image format, ol
a text file might contain unformatted text in the English language or text formatted in the TeX markup
language.

The file tool analyzes files and indicates their type and—-if known—-the format of the data they contain.

Supply the name of a file as an argument to file and it outputs the name of the file, followed by a
description of its format and type.

* To determine the format of the file "/usr/doc/HOWTO/README.gz', type:

$ file /usr/doc/HOWTO/README.gz RET
/usr/doc/HOWTO/README.gz: gzip compressed data, deflated, original
filename, last modified: Sun Apr 26 02:51:48 1998, os: Unix

$

This command reports that the file “/usr/doc/HOWTO/README.gz' contains data that has been
compressed with the gzip tool.

To determine the original format of the data in a compressed file, use the "-z' option.

9. Managing Files 124

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To determine the format of the compressed data contained in the file
“fusr/doc/HOWTO/README.qgz', type:

$ file =z /usr/doc/HOWTO/README.gz RET

/usr/doc/HOWTO/README.gz: English text (gzip compressed data, deflated,
original filename, last modified: Sun Apr 26 02:51:48 1998, os: Unix)

$

This command reports that the data in /usr/doc/HOWTO/README.gz', a compressed file, is English
text.

NOTE: Currently, file differentiates among more than 100 different data formats, including several human
languages, many sound and graphics formats, and executable files for many different operating systems.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.2 Changing File Modification Time

Use touch to change a file's timestamp without modifying its contents. Give the name of the file to be
changed as an argument. The default action is to change the timestamp to the current time.

» To change the timestamp of file "pizzicato' to the current date and time, type:

$ touch pizzicato RET

To specify a timestamp other than the current system time, use the "—d' option, followed by the date and
time that should be used enclosed in quote characters. You can specify just the date, just the time, or both.

» To change the timestamp of file “pizzicato' to "17 May 1999 14:16', type:

$ touch —d '17 May 1999 14:16' pizzicato RET

« To change the timestamp of file "pizzicato' to "14 May', type:

$ touch —d '14 May' pizzicato RET

* To change the timestamp of file "pizzicato' to "14:16', type:

$ touch —d '14:16' pizzicato RET

NOTE: When only the date is given, the time is set to "0:00'; when no year is given, the current year is

9. Managing Files 125

The Linux Cookbook: Tips and Techniques for Everyday Use:

used.

See Info file “fileutils.info', node "Date input formats', for more information on date input formats.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

9.3 Splitting a File into Smaller Ones

It's sometimes necessary to split one file into a number of smaller ones. For example, suppose you have a
very large sound file in the near-CD—quality MPEGZ2, level 3 ("MP3") format. Your file, "large.mp3’, is
4,394,422 bytes in size, and you want to transfer it from your desktop to your laptop, but your laptop and
desktop are not connected on a network——the only way to transfer files between them is by floppy disk.
Because this file is much too large to fit on one floppy, you use split.

The split tool copies a file, chopping up the copy into separate files of a specified size. It takes as optional
arguments the name of the input file (using standard input if none is given) and the file name prefix to use
when writing the output files (using "x' if none is given). The output files' names will consist of the file
prefix followed by a group of letters: "aa’, ‘ab’, "ac', and so on—-the default output file hames would

be "xaa’, 'xab', and so on.

Specify the number of lines to put in each output file with the "—I' option, or use the "-b' option to
specify the number of bytes to put in each output file. To specify the output files' sizes in kilobytes or
megabytes, use the "—b' option and append “k' or ‘m’, respectively, to the value you supply. If neither
"—I'nor "-b'" is used, split defaults to using 1,000 lines per output file.

« To split "large.mp3' into separate files of one megabyte each, whose names begin with
“large.mp3.", type:

$ split -b1lm large.mp3 large.mp3. RET

This command creates five new files whose names begin with “large.mp3.". The first four files are one
megabyte in size, while the last file is 200,118 bytes——the remaining portion of the original file. No alteration
is made to “large.mp3'".

You could then copy these five files onto four floppies (the last file fits on a floppy with one of the larger
files), copy them all to your laptop, and then reconstruct the original file with(saé section Concatenating
Text).

* To reconstruct the original file from the split files, type:

$ cat large.mp3.* 62; large.mp3 RET
$ rm large.mp3.* RET

9. Managing Files 126

The Linux Cookbook: Tips and Techniques for Everyday Use:

In this example, the rm tool is used to delete all of the split files after the original file has been reconstructed

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

9.4 Comparing Files

There are a number of tools for comparing the contents of files in different ways; these recipes show how to
use some of them. These tools are especially useful for comparing passages of text in files, but that's not thi
only way you can use them.

9.4.1 Determining Whether Two Files Differ = Comparing two files to see if they differ.
9.4.2 Finding the Differences between Files Showing the differences between files.

9.4.3 Patching a File with a Difference Report Applying a difference report to a file.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.4.1 Determining Whether Two Files Differ

Use cmp to determine whether or not two text files differ. It takes the names of two files as arguments, and i
the files contain the same data, cmp outputs nothing. If, however, the files differ, cmp outputs the byte
position and line number in the files where the first difference occurs.

 To determine whether the files ‘master' and "backup' differ, type:

$ cmp master backup RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.4.2 Finding the Differences between Files

Use diff to compare two files and output a difference report (sometimes called a "diff") containing the text
that differs between two files. The difference report is formatted so that other tools (namely, patch———see
sectionPatching a File with a Difference Report) can use it to make a file identical to the one it was
compared with.

To compare two files and output a difference report, give their names as arguments to diff.

9. Managing Files 127

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To compare the files "manuscript.old' and “'manuscript.new', type:

$ diff manuscript.old manuscript.new RET

The difference report is output to standard output; to save it to a file, redirect the output to the file to save to:

$ diff manuscript.old manuscript.new 62; manuscript.diff RET

In the preceding example, the difference report is saved to a file called "'manuscript.diff'.

The difference report is meant to be used with commands such as patch, in order to apply the differences to
a file. See Info file “diff.info', node "Top', for more information on diff and the format of its output.

To better see the difference between two files, use sdiff instead of diff; instead of giving a difference
report, it outputs the files in two columns, side by side, separated by spaces. Lines that differ in the files are

separated by °|'; lines that appear only in the first file end with a “<', and lines that appear only in the
second file are preceded with a *>".

* To peruse the files “laurel' and “hardy' side by side on the screen, with any differences
indicated between columns, type:

$ sdiff laurel hardy | less RET

To output the difference between three separate files, use diff3.

» To output a difference report for files “larry', “curly’, and "moe’, and output it in a file
called “stooges', type:

$ diff3 larry curly moe 62; stooges RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.4.3 Patching a File with a Difference Report

To apply the differences in a difference report to the original file compared in the report, use patch. It takes

as arguments the name of the file to be patched and the name of the difference report file (or "patchfile”). It
then applies the changes specified in the patchfile to the original file. This is especially useful for distributing
different versions of a file——small patchfiles may be sent across networks easier than large source files.

 To update the original file ‘'manuscript.new' with the patchfile ‘'manuscript.diff', type:

9. Managing Files 128

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ patch manuscript.new manuscript.diff RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.5 Compressed Files

File compression is useful for storing or transferring large files. When you compress a file, you shrink it and
save disk space. File compression uses an algorithm to change the data in the file; to use the data in a
compressed file, you must first uncompress it to restore the original data (and original file size).

The following recipes explain how to compress and uncompress files.

9.5.1 Compressing a File Making files smaller.
9.5.2 Decompressing a File Making files bigger.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.5.1 Compressing a File

Use the gzip ("GNU zip") tool to compress files. It takes as an argument the name of the file or files to be
compressed; it writes a compressed version of the specified files, appends a ".gz' extension to their file
names, and then deletes the original files.

» To compress the file "‘war-and-peace', type:

$ gzip war-and—peace RET

This command compresses the file ‘war—-and—-peace’, putting it in a new file named
‘war—and-peace.gz'; gzip then deletes the original file, ‘war—and—peace'.

[<] [>] [=<] [Up] [>>] [Top] [Contents] [Index] [2]
9.5.2 Decompressing a File

To access the contents of a compressed file, use gunzip to decompress (or "uncompress") it.

9. Managing Files 129

The Linux Cookbook: Tips and Techniques for Everyday Use:

Like gzip, gunzip takes as an argument the name of the file or files to work on. It expands the specified
files, writing the output to new files without the ".gz' extensions, and then deletes the compressed files.

» To expand the file ‘war-and—peace.gz', type:

$ gunzip war-and-peace.gz RET

This command expands the file ‘war—-and-peace.gz' and puts it in a new file called
‘war—and-peace'; gunzip then deletes the compressed file, ‘war-and-peace.gz'.

NOTE: You can view a compressed text file without uncompressing it by using zless. This is useful when
you want to view a compressed file but do not want to write changes to it. (For more information about
zless , see sectioRerusing Text).

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.6 File Archives

An archive is a single file that contains a collection of other files, and often directories. Archives are usually
used to transfer or make a backup copy of a collection of files and directories——this way, you can work with
only one file instead of many. This single file can be easily compressed as explained in the previous section
and the files in the archive retain the structure and permissions of the original files.

Use the tar tool to create, list, and extract files from archives. Archives made with tar are sometimes
called "tar files," "tar archives," or——because all the archived files are rolled into one———"tarballs."

The following recipes show how to use tar to create an archive, list the contents of an archive, and extract
the files from an archive. Two common options used with all three of these operations are "—f' and "-v":

to specify the name of the archive file, use "—f' followed by the file name; use the "-v' ("verbose") option
to have tar output the names of files as they are processed. While the "—Vv' option is not necessaryi, it lets
you observe the progress of your tar operation.

NOTE: The name of this tool comes from "tape archive," because it was originally made to write the archive
directly to a magnetic tape device. It is still used for this purpose, but today, archives are almost always sav
to a file on disk.

See Info file “tar.info', node "Top', for more information about managing archives with tar.

9.6.1 Creating a File Archive Creating an archive of files.
9.6.2 Listing the Contents of an Archive Listing the contents of an archive.
9.6.3 Extracting Files from an Archive Extracting the files from an archive.

9. Managing Files 130

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

9.6.1 Creating a File Archive

To create an archive with tar, use the "—c' ("create") option, and specify the name of the archive file to
create with the "—f' option. It's common practice to use a name with a ".tar' extension, such as
‘my-backup.tar'.

Give as arguments the names of the files to be archived; to create an archive of a directory and all of the file
and subdirectories it contains, give the directory's name as an argument.

« To create an archive called “project.tar' from the contents of the “project' directory, type:

$ tar —cvf project.tar project RET

This command creates an archive file called “project.tar' containing the “project' directory and
all of its contents. The original “project’ directory remains unchanged.

Use the "—z' option to compress the archive as it is being written. This yields the same output as creating an

uncompressed archive and then using gzip to compress it, but it eliminates the extra step.

* To create a compressed archive called “project.tar.gz' from the contents of the
“project’ directory, type:

$ tar —zcvf project.tar.gz project RET

This command creates a compressed archive file, “project.tar.gz', containing the
“project’ directory and all of its contents. The original “project' directory remains unchanged.

NOTE: When you use the “-z' option, you should specify the archive name with a ".tar.gz' extension
and not a ".tar' extension, so the file name shows that the archive is compressed. This is not a
requirement, but it serves as a reminder and is the standard practice.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

9.6.2 Listing the Contents of an Archive

To list the contents of a tar archive without extracting them, use tar with the "—t' option.

9. Managing Files 131

The Linux Cookbook: Tips and Techniques for Everyday Use:

« To list the contents of an archive called “project.tar', type:

$ tar —tvf project.tar RET

This command lists the contents of the “project.tar' archive. Using the "—Vv' option along with the
“—t' option causes tar to output the permissions and modification time of each file, along with its file
name--the same format used by the Is command with the "-dption (see sectiohisting File Attributes).

Include the "—z' option to list the contents of a compressed archive.

* To list the contents of a compressed archive called “project.tar.gz’, type:

$ tar —ztvf project.tar RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.6.3 Extracting Files from an Archive
To extract (or unpack) the contents of a tar archive, use tar with the "—x' ("extract") option.

» To extract the contents of an archive called “project.tar’, type:

$ tar —xvf project.tar RET

This command extracts the contents of the “project.tar' archive into the current directory.
If an archive is compressed, which usually means it will have a ".tar.gz' or ".tgz' extension, include

the "—z' option.

* To extract the contents of a compressed archive called "project.tar.gz', type:

$ tar —zxvf project.tar.gz RET

NOTE: If there are files or subdirectories in the current directory with the same name as any of those in the
archive, those files will be overwritten when the archive is extracted. If you don't know what files are
included in an archive, consider listing the contents of the archive first (see $ésfiionthe Contents of an
Archive).

Another reason to list the contents of an archive before extracting them is to determine whether the files in
the archive are contained in a directory. If not, and the current directory contains many unrelated files, you
might confuse them with the files extracted from the archive.

9. Managing Files 132

The Linux Cookbook: Tips and Techniques for Everyday Use:

To extract the files into a directory of their own, make a new directory, move the archive to that directory,
and change to that directory, where you can then extract the files from the archive.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

9.7 Tracking Revisions to a File

The Revision Control System (RCS) is a set of tools for managing multiple revisions of a single file.

To store a revision of a file so that RCS can keep track of it, you check in the file with RCS. This deposits th
revision of the file in an RCS repository——-a file that RCS uses to store all changes to that file. RCS makes
repository file with the same file name as the file you are checking in, but with a *,v' extension appended

to the name. For example, checking in the file foo.text' with RCS creates a repository file called

“foo.text,v'.

Each time you want RCS to remember a revision of a file, you check in the file, and RCS writes to that file's
RCS repository the differences between the file and the last revision on record in the repository.

To access a revision of a file, you check out the revision from RCS. The revision is obtained from the file's
repository and is written to the current directory.

Although RCS is most often used with text files, you can also use it to keep track of revisions made to other
kinds of files, such as image files and sound files.

Another revision control system, Concurrent Versions System (CVS), is used for tracking collections of
multiple files whose revisions are made concurrently by multiple authors. While much less simple than RCS,
it is very popular for managing free software projects on the Internet. See Info file "cvs.info’, node "Top', for
information on using CVS.

9.7.1 Checking In a File Revision Checking in a file with RCS.
9.7.2 Checking Out a File Revision = Checking out a file from RCS.

9.7.3 Viewing a File's Revision Log Viewing the revision log.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.7.1 Checking In a File Revision

When you have a version of a file that you want to keep track of, use ci to check in that file with RCS.

Type ci followed by the name of a file to deposit that file into the RCS repository. If the file has never
before been checked in, ci prompts for a description to use for that file; each subsequent time the file is

9. Managing Files 133

The Linux Cookbook: Tips and Techniques for Everyday Use:

checked in, ci prompts for text to include in the file's revision log (see seMiewing a File's Revision
Log). Log messages may contain more than one line of text; type a period (".") on a line by itself to end the
entry.

For example, suppose the file "novel' contains this text:

This is a tale about many things, including a long voyage across
America.

* To check in the file "novel with RCS, type:

$ ci novel RET

novel,v 60;—— novel

enter description, terminated with single "." or end of file:
NOTE: This is NOT the log message!

62;62; The Great American Novel. RET

62;62; . RET

$

This command deposits the file in an RCS repository file called "novel,v', and the original file,
‘novel', is removed. To edit or access the file again, you must check out a revision of the file from RCS
with which to work (see sectigdhecking Out a File Revision).

Whenever you have a new revision that you want to save, use ci as before to check in the file. This begins
the process all over again.

For example, suppose you have checked out the first revision of "novel' and changed the file so that it
now looks like this:

This is a very long tale about a great many things, including my long
voyage across America, and back home again.

» To deposit this revision in RCS, type:

$ ci novel RET

novel,v 60;— novel

new revision: 1.2; previous revision: 1.1

enter log message, terminated with single "." or end of file:
62;62; Second draft. RET

62:62; . RET

$

If you create a subdirectory called 'RCS' (in all uppercase letters) in the current directory, RCS recognizes
this specially named directory instead of the current directory as the place to store the ",v' revision files.
This helps reduce clutter in the directory you are working in.

If the file you are depositing is a text file, you can have RCS insert a line of text, every time the file is

9. Managing Files 134

The Linux Cookbook: Tips and Techniques for Everyday Use:

checked out, containing the name of the file, the revision number, the date and time in the UTC (Coordinate
Universal Time) time zone, and the user ID of the author. To do this, put the text "$'ld$ at a place in the file
where you want this text to be written. You only need to do this once; each time you check the file out, RCS
replaces this string in the file with the header text.

For example, this chapter was written to a file, ‘'managing—files.texinfo', whose revisions were
tracked with RCS; the “$'ld$ string in this file currently reads:

$ld: managing—files.texinfo,v 1.32 2001/05/16 16:57:58 m Exp m $

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.7.2 Checking Out a File Revision

Use co to check out a revision of a file from an RCS repository.
To check out the latest revision of a file that you intend to edit (and to check in later as a new revision), use

the —I (for "lock™) option. Locking a revision in this fashion prevents overlapping changes being made to the
file should another revision be accidentally checked out before this revision is checked in.

* To check out the latest revision of the file “novel' for editing, type:

$ co -l novel RET

This command checks out the latest revision of file “novel' from the “novel,v' repository, writing it to
a file called "novel' in the current directory. (If a file with that name already exists in the current directory,
co asks whether or not to overwrite the file.) You can make changes to this file and then check it in as a new

revision (see sectioBhecking In a File Revision).

You can also check out a version of a file as read only, where changes cannot be written to it. Do this to
check out a version to view only and not to edit.

To check out the current version of a file for examination, type co followed by the name of the file.

» To check out the current revision of file "novel', but not permit changes to it, type:

$ co novel RET

This command checks out the latest revision of the file "novel' from the RCS repository
‘novel,v' (either from the current directory or in a subdirectory named 'RCS).

To check out a version other than the most recent version, specify the version number to check out with the
“—r' option. Again, use the "—I' option to allow the revision to be edited.

9. Managing Files 135

The Linux Cookbook: Tips and Techniques for Everyday Use:
» To check out revision 1.14 of file "novel’, type:

$ co -1 -r1.14 novel RET

NOTE: Before checking out an old revision of a file, remember to check in the latest changes first, or they
may be lost.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

9.7.3 Viewing a File's Revision Log

Use rlog to view the RCS revision log for a file——type rlog followed by the name of a file to list all of the
revisions of that file.

* To view the revision log for file "novel', type:

$ rlog novel RET

RCS file: novel,v

Working file: novel

head: 1.2

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv
total revisions: 2; selected revisions: 2
description:

The Great American Novel.

revision 1.2
date: 1991/06/20 15:31:44; author: leo; state: Exp; lines: +2 -2
Second draft.

revision 1.1
date: 1991/06/21 19:03:58; author: leo; state: Exp;
Initial revision

$

This command outputs the revision log for the file “novel’; it lists information about the RCS repository,
including its name ("novel,v') and the name of the actual file ("novel). It also shows that there are

two revisions——the first, which was checked in to RCS on 20 June 1991, and the second, which was checke
in to RCS the next day, on 21 June 1991.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

9. Managing Files 136

PART THREE: Text

10. Viewing Text How to view text on the display.

11. Text Editing Editing text, that eternal pastime.

12. Grammar and Reference Tools for grammar and reference.

13. Analyzing Text Techniques for textual analysis.

14. Formatting Text The ways to format plain text.

15. Searching Text Searching for words and patterns in text.
16. Typesetting and Word Processing Outputting typeset text.

17. Fonts Fonts and typefaces.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

PART THREE: Text 137

10. Viewing Text

Dealing with textual matter is the meat of Linux (and of most computing), so there are going to be many
chapters about the various aspects of text. This first chapter in this part of the book shows how to view text
your display screen.

There are many ways to view or otherwise output text. When your intention is to edit the text of a file, open i
in a text editor, as describediext Editing.

Some kinds of files——such as PostScript, DVI, and PDF files——often contain text in them, but they are
technically not text files. These are image format files, and | describe methods for viewing them in

Previewing Print Files.

NOTE: To learn how to browse files and their contents in a Web browseBreesing Files.

10.1 Perusing Text Perusing text on the display.
10.2 Outputting Text Outputting part of a text file.
10.3 Streaming Text Reading a stream of text.

10.4 Viewing a Character Chart Viewing a character chart.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

10.1 Perusing Text

Use less to peruse text, viewing it one screen (or "page") at a time. The less tool works on either files or
standard output—-it is popularly used as the last command on a pipeline so that you can page through the te

output of some commands. For an example Rezbrecting Output to Another Command's Input.

zless is identical to less, but you use it to view compressed text files; it allows you to read a compressed
text file's contents without having to uncompress it first (see seCbampressed Files). Most of the system
documentation in the “/usr/doc' and “/usr/share/doc’ directories, for example, consists of

compressed text files.

You may, on occasion, be confronted with a reference to a command for paging text called more. It was the
standard tool for paging text until it gave way to less in the early to mid—1990s; less comes with many

more options——its most notable advantage being the ability to scroll backward through a file——but at the
expense of being almost exactly three times the size of more. Hence there are two meanings to the saying,
"less is more."

10.1.1 Perusing a Text File Perusing a file.

10. Viewing Text 138

The Linux Cookbook: Tips and Techniques for Everyday Use:

10.1.2 Perusing Multiple Text Files Perusing many files at once.
10.1.3 Commands Available While Perusing Keystroke commands while you
Text peruse.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

10.1.1 Perusing a Text File
To peruse or page through a text file, give the name of the file as an argument to less.

» To page through the text file 'README!', type:

$ less README RET

This command starts less and displays the file ' README' on the screen.

You can more forward through the document a line at a time by typing @downarrow, and you can move
forward through the document a screenful at a time by typing PgDn. To move backward by a line, type
@uparrow, and type PgUp to move backward by a screenful. [GNU INFO BUG: any <> in the preceding
line should be the <— and/or —> arrow keys.]

You can also search through the text you are currently perusing—-this is descfBeeddining Text in Less.

To stop viewing and exit less, press Q.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

10.1.2 Perusing Multiple Text Files

You can specify more than one file to page through with less, and you can specify file patterns in order to
open all of the files that match that pattern.

* To page through all of the Unix FAQ files in “/usr/doc/FAQ', type:

$ less /usr/doc/FAQ/unix—faq-part* RET

This command starts less, opens in it all of the files that match the given pattern
“Jusr/doc/FAQ/unix—fag—part*, and begins displaying the first one:

10. Viewing Text 139

The Linux Cookbook: Tips and Techniques for Everyday Use:

Path: senator-bedfellow,.mit,edu!fagserv

From: tmatimar@isgtec,com {Ted Timar}

Newsgroups: comp,unix,questions,comp,unix,shell,comp,answers,news,answers
Subject: Unix - Frequently Asked (uestions (1/7) [Frequent postingl
Supersedes: <unix-fag/faq/partl_B69650053@rtfm, mit,edu>

Followup-To: comp,unix,questions

Dates 31 Jul 1997 07:55:27 GMT

Organization: ISG Technologies, Inc

Lines: 413

Approved: news-answers-request@MIT,Edu

Distribution: world

Expires: 28 Aug 1997 07:55:05 GMT

Message-1D: <unix-faq/faq/partl_B870335705@rtfm,mit,edu>

References: <unix-fag/faq/contents_870335705Crtfm,mit,edu>
NNTP-Posting-Host: penguin-lust.mit,edu

¥-Last-Updated: 1996/06/11

Originator: fagserv@penguin-lust ,MIT,EDU

Xref: senator-bedfellow,mit,edu comp,unix,questions$131651 comp,unix,shell 52166
comp,answers:27315 news,answers:108512

Archive-name: unix-fag/faq/partl
Version: $Id: partl,v 2.9 1996/06/11 13:07:56 tmatimar Exp $

Ausr/doc/FAD/unix-fag-partl {file 1 of 7

NOTE: When you specify more than one file to page, less displays each file in turn, beginning with the
first file you specify or the first file that matches the given pattern. To move to the next file, press N; to move
to the previous file, press P.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

10.1.3 Commands Available While Perusing Text

The following table gives a summary of the keyboard commands that you can use while paging through text
in less. It lists the keystrokes and describes the commands.

KEYSTROKE COMMAND

@uparrow Scroll back through the text ("up"”) one line. [GNU INFO BUG: any <>
in the preceding line should be the <- and/or —> arrow keys.]

@downarrow Scroll forward through the text ("down") one line. [GNU INFO BUG:
any <> in the preceding line should be the <- and/or —> arrow keys.]

@leftarrowor@rightarrow Scroll horizontally (left or right) one tab stop; useful for perusing files

that contain long lines. [GNU INFO BUG: any <> in the preceding line
should be the <- and/or —> arrow keys.]

PgUporSPC Scroll forward through the text by one screenful.

PgDn Scroll backward through the text by one screenful.

C-l Redraw the screen.

/pattern Search forward through the file for lines containing pattern.
?pattern Search backward through the file for lines containing pattern.
< Move to beginning of the file.

10. Viewing Text 140

The Linux Cookbook: Tips and Techniques for Everyday Use:

Move to end of the file.

h Display a help screen.
q Quit viewing the file and exit less.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

10.2 Outputting Text

The simplest way to view text is to output it to standard output. This is useful for quickly looking at part of a
text, or for passing part of a text to other tools in a command line.

Many people still use cat to view a text file, especially if it is a very small file. To output all of a file's
contents on the screen, use cat and give the file name as an argument.

This isn't always the best way to peruse or read text——a very large text will scroll off the top of the screen, fc
example——but sometimes the simple outputting of text is quite appropriate, such as when you just want to
output one line of a file, or when you want to output several files into one new file.

This section describes the tools used for such purposes. These tools are best used as filters, often at the en
a pipeline, outputting the standard input from other commands.

NOTE: Tools and methods for outputting text for printing, such as outputting text in a font, are described in
Converting Plain Text for Output.

10.2.1 Showing Non-printing Characters Showing non-printing characters.
10.2.2 Outputting a Beginning Part of a Text Output the beginning part of a text.

10.2.3 Outputting an Ending Part of a Text Output the ending part of a text.
10.2.4 Outputting a Middle Part of a Text Output the middle part of a text.

10.2.5 Outputting the Text between Strings ~ Output the text between strings.

10.2.6 Outputting Text in a Dialect Output text in a dialect.
[<] [2] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

10.2.1 Showing Non-printing Characters

Use cat with the "=Vv' option to output non—printing characters, such as control characters, in such a way
so that you can see them. With this option, cat outputs those characters in hat notation, where they are

represented by a "' and the character corresponding to the actual control character (for example, a bell
character would be output as *G").

10. Viewing Text 141

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To peruse the file “translation' with non—printing characters displayed in hat notation, type:

$ cat -v translation | less RET

In this example, the output of cat is piped to less for viewing on the screen; you could have piped it to
another command, or redirected it to a file instead.

To visually display the end of each line, use the "—E' option; it specifies that a *$' should be output after
the end of each line. This is useful for determining whether lines contain trailing space characters.

Also useful is the "=T' option, which outputs tab characters as "I'.

The "—A' option combines all three of these options—-it is the same as specifying —-VvET".

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

10.2.2 Outputting a Beginning Part of a Text
Use head to output the beginning of a text. By default, it outputs the first ten lines of its input.

* To output the first ten lines of file “placement-list’, type:

$ head placement-list RET

You can specify as a numeric option the number of lines to output. If you specify more lines than a file
contains, head just outputs the entire text.

» To output the first line of file “placement-list', type:

$ head -1 placement-list RET

* To output the first sixty—six lines of file "placement-list’, type:

$ head —66 placement-list RET

To output a given number of characters instead of lines, give the number of characters to output as an
argument to the “—c' option.

* To output the first character in the file “placement-list', type:

10. Viewing Text 142

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ head —c1 placement-list RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

10.2.3 Outputting an Ending Part of a Text

The tail tool works like head, but outputs the last part of its input. Like head, it outputs ten lines by
default.

* To output the last ten lines of file “placement-list', type:

$ tail placement-list RET

» To output the last fourteen lines of file “placement-list', type:

$ tail 14 placement-list RET

It is sometimes useful to view the end of a file on a continuing basis; this can be useful for a "growing" file, a
file that is being written to by another process. To keep viewing the end of such a file, use tail with the
—f' ("follow") option. Type C—c to stop viewing the file.

* To follow the end of the file "access_log', type:

$ tail —f access_log RET

NOTE: You can achieve the same result with less; to do this, type F while perusing the text (see section
Perusing Text).

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

10.2.4 Outputting a Middle Part of a Text

There are a few ways to output only a middle portion of a text.

To output a particular line of a file, use the saabl (see sectiokditing Streams of Text). Give as a quoted
argument the line number to output followed by "!d'. Give the file name as the second argument.

» To output line 47 of file "placement-list', type:

10. Viewing Text 143

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ sed '47!d' placement-list RET

To output a region of more than one line, give the starting and ending line numbers, separated by a comma.

 To output lines 47 to 108 of file "placement-list', type:

$ sed '47,108!d' placement-list RET

You can also combine multiple head or tail commands on a pipeline to get the desired result (see section

Redirecting Output to Another Command's Input).
* To output the tenth line in the file “placement-list’, type:

$ head placement-list | tail -1 RET

 To output the fifth and fourth lines from the bottom of file “placement-list', type:

$ tail -5 placement-list | head -2 RET

* To output the 500th character in “placement-list’, type:

$ head -c500 placement-list | tail -c1 RET

 To output the first character on the fifth line of the file “placement-list’, type:

$ head -5 placement-list | tail -1 | head —c1 RET

In the preceding example, three commands were used: the first five lines of the file
“placement-list' are passed to tail, which outputs the last line in the output (the fifth line in the
file); then, the last head command outputs the first character in that last line, which achieves the desired

result.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]
10.2.5 Outputting the Text between Strings

Use sed to select lines of text between strings and output either just that section of text, or all of the lines of
text excepthat section. The strings can be words or even regular expressions (see_section Regular

Expressions——Matching Text Patterns).

10. Viewing Text 144

The Linux Cookbook: Tips and Techniques for Everyday Use:

Use the "—n' option followed by “'ffirst/,/last/p" to output just the text between the strings first and
last, inclusive. This is useful for outputting, say, just one chapter or section of a text file when you know the
text used to begin the sections with.

 To output all the text from file "book—draft' between “Chapter 3' and "Chapter 4',
type:

$ sed —n '/Chapter 3/,/Chapter 4/p' book—draft RET

To output all of the lines of text except those between two patterns, omit the "—n' option.

« To output all the text from file "book—draft', except that which lies between the text
"Chapter 3' and "Chapter 4, type:

$ sed '/Chapter 3/,/Chapter 4/p' book-draft RET

NOTE: For a more thorough introduction to sedeeEditing Streams of Text.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

10.2.6 Outputting Text in a Dialect

@sf{Debian}: “filters'

@sfH{WWW}: http://www.princeton.edu/~mkporwit/pub_links/davido/slana/

@sfH{WWW}: http://www.mathlab.sunysb.edu/~elijah/src.html

There are all kinds of tools that work as filters on text; this recipe describes a specific group of filters——thos

that filter their standard input to give the text an accent or dialect, and are intended to be humorous.
Generally speaking, a filter is a tool that works on standard input, changing it in some way, and then passing

it to standard output.

» To apply the kraut filter to the text in the file “/etc/motd’, type:

$ cat /etc/motd | kraut RET

These commands pass the contents of the file /etc/motd’ to the kraut filter, whose output is then sent
to standard output. The contents of ‘/etc/motd’ are not changed.

Some of the dialect filters available include nyc, which gives a "New Yawker" dialect to text, and

newspeak, which translates text into the approved language of the thought police, as described in George
Orwell's novel, 1984. Hail Big Brother!

10. Viewing Text 145

http://www.princeton.edu/~mkporwit/pub_links/davido/slang/
http://www.mathlab.sunysb.edu/~elijah/src.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

10.3 Streaming Text

@sf{WWW}: http://www.maurer—it.com/open—source/sview/
It's been demonstrated that people read and comprehend printed text faster than they read and comprehen

text displayed on a computer display screen. Rapid serial visual presentation, or RSVP, is a technique that
aims to increase reading speed and comprehension with the use of computer display screens. With this
technique, text is displayed streamed on the screen, one word at a time, with pauses between words and
punctuation. The average reading time is lowered and comprehension is increased significantly with this
technique.

GNOME sview is a "streaming viewer" for X; it streams text a word at a time on the screen, at a default rate
of 450 words per minute. Use it to read text files and the X selection, which is text you have selected with th
mouse (see secti@electing Text).

To open a file in sview, either specify it as an argument to the command, or choose Open from the

File menu in sview, and select the file from there.

» To view the contents of the text file “alice—in—wonderland' in sview, type:

$ sview alice—-in—wonderland RET

To start streaming the text, either press S once, or left—click on the button marked RSVP. Both S and the
RSVP button toggle the streaming; the left and right arrow keys control the speed.

Text being streamed with sview looks like this:

10. Viewing Text 146

http://www.maurer-it.com/open-source/sview/

The Linux Cookbook: Tips and Techniques for Everyday Use:

File Buffer Help

4 B Q 450
Prey Next RSVP

beginning

2t

L-|

ALICE was to get very tired of sitting by her sister on
, R the bank, and of having

nothing to do: once or twice she had peeped into the book her sister
was reading, but it had

no pictures or conversations in it, "and what is the use of a book,"
thought &lice, "without

pictures or conversation?"

The large area with the word “beginning' in it is where the text is being streamed. The text in the
lower—-left window is a shrunken view of the entire file, the text in the lower-right window is the paragraph
from which the current word comes from.

To open another file, choose it from the menu; you can have many files open in sview at once.
sview places each file in its own buffer. You can also paste the X selection into a buffer of its own—-to
switch to a different buffer, choose its name from the Buffer menu.

Type Q to quit reading and exit sview.

The following table lists the keyboard commands used in sview and describes their meaning.

KEYSTROKE DESCRIPTION

@leftarrow Decrease the stream speed. [GNU INFO BUG: any <> in the preceding line should be the
<— arrow key.]

@rightarrow Increase the stream speed. [GNU INFO BUG: any <> in the preceding line should be the
—> arrow key.]

C-o Open a file.

C-q Quit viewing text and exit sview.
C-w Erase the current text buffer.

M-n Move forward to the next word.

M-p Move backward to the previous word.
S Toggle the streaming of text.

10. Viewing Text 147

The Linux Cookbook: Tips and Techniques for Everyday Use:

X Display the X selection in its own buffer.

N Move forward to the next paragraph.

P Move backward to the previous paragraph.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

10.4 Viewing a Character Chart

To view a character chart containing a list of all the valid characters in the ASCII character set and the
character codes to use to type them, view the asciiman page.

» To view an ASCII character set, type:

$ man ascii RET

You can use the octal codes listed for each character to type them in Emag¢sseisg® Special
Characters in Emacs.

The default Linux character set, the ISO 8859-1 ("Latin 1") character set, contains all of the standard ASCII
character set plus an additional 128 characters.

To view the ISO 8859-1 character set, which contains an extended set of characters above the standard 12
ASCII characters, view the iso_8859 1man page.

» To view the ISO 8859-1 character set, type:

$ man iso_8859_1 RET

You can use this page to see all of the characters in this character set and how to input them.

NOTE: There's a special way to "quote" these characters in Emacs; this technique is described in Inserting
Special Characters in Emacs.

The "miscfiles' package also contains charts for these character sets, as expldifard insts and
Reference Files.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

10. Viewing Text 148

11. Text Editing

Text editing is one of the most fundamental activities of computing on Linux—based systems, or most any
computer for that matter. We edit text when writing a document, sending email, making a Web page, posting
an article for Usenet, programming——and the list goes on. Most people spend a good deal of their computin
time editing text with a text editor application.

There are a lot of text editors to choose from on Linux systems, as the first recipe in this chapter shows, but
the majority of editors fit in one of two families of editor: Emacs and Vi. Most users prefer one or the other;
rarely is one adept at both. | give more coverage to Emacs, and not only because it's my preferred editor—-i
keystroke commands are used by default in many other tools and applications, including the bash shell (see
sectionThe Shell).

11.1 Choosing the Perfect Text Editor Overview of text editors.

11.2 Emacs Introducing the Emacs editor.

11.3 Running a Vi Tutorial Learning to use the Vi editor.

11.4 Selecting Text Selecting text.

11.5 Editing Streams of Text Editing a stream of text in batch.

11.6 Concatenating Text Concatenating text.

11.7 Including Text Files Including text files into new files.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.1 Choosing the Perfect Text Editor

The following table describes some of the more interesting text editors available, and includes information
about their special traits and characteristics.

TEXT DESCRIPTION
EDITOR

ae Anthony's Editor, ae, is a simple, easy—to—-use text editor. It has modes to emulate the behavior
of other text editors. {@sf{Debian}}: “ae' {@sf{WWW}}:

http://dmoz.org/Computers/Software/Editors/Vi/

cooledit Cooledit is a popular, fast text editor for use in X; its features include anti—aliased fonts,
Unicode support, and extensibility via the Python programming language. {@sf{Debian}}:
“cooledit' {@sf{WWW}}: http://cooledit.sourceforge.net/

dedit DEdit is a simple editor for use in X with GNOME installed. It can read compressed files and
display Japanese characters. {@sf{Debian}}: "dedit'
ee Intended to be an editor that novices can begin using immediately, the Easy Editor features

pop-up menus. {@sf{Debian}}: “ee' {@s{WWW}}: http://mahon.cwx.net/

11. Text Editing 149

http://dmoz.org/Computers/Software/Editors/Vi/
http://cooledit.sourceforge.net/
http://mahon.cwx.net/

elvis

emacs

jed

joe

nano

ted

the

Vi

vim

wily

xedit

Xemacs

The Linux Cookbook: Tips and Techniques for Everyday Use:

Elvis is a modern implementation of Vi that comes with many new features and extensions.
{@sf{Debian}}: “elvis' {@sf{WWW}}: http://elvis.vi—editor.org
Emacs is one of the two most—popular text editors. I've devoted an entire section to it in this

book: Emacs. @sf{Debian}: "'emacsen—-common' @sf{Debian}:
‘emacs20' @sf{WWW}: “http://lwww.emacs.org/'

John E. Davis's jed offers many of the conveniences of Emacs and is geared specifically
toward programmers. Features unique to it include drop—down menus that work in the console;
jed loads quickly, and makes editing files at a shell prompt easy and fast. {@sf{Debian}}:

jed' {@sf{WWW}}: http://space.mit.edu/~davis/jed.html

Joe's Own Editor, joe, is a full-screen editor with a look and feel reminiscent of old DOS text
editors like EDIT. {@sf{Debian}}: “joe' {@s{WWW}}: ftp:/ftp.std.com/src/editors/

Nano is a free software editor inspired by Pico, the editor that is included with the University of
Washington's proprietary Pine email program. It's also faster than Pico, and comes with more
features. {@sf{Debian}}: ‘nano’ {@sf{WWW}}: http://www.nano—editor.org/

Ted is a WYSIWYG text editor for use in X which reads and writes ".rtf' files in
Microsoft's "Rich Text Format." {@sf{Debian}}: "ted' {@s{WWW}}:

http://www.nllgg.nl/Ted/

The Hessling Editor is a configurable editor that uses the Rexx macro language. It was inspired
by the XEDIT editor for VM/CMS and the Kedit editor for DOS. {@sf{Debian}}:

“the' {@sf{Debian}}: ‘the-doc' {@s{WWW}}:

http://www.lightlink.com/hessling/THE/

Vi (pronounced "vye," or sometimes "vee—eye") is a visual, or full-screen, editor. Touch
typists often find its keystroke commands enable very fast editing. Together with Emacs, Vi
shares the spotlight for most popular editor on Linux and Unix—-based systems in general. Both
were initially written in the same period, and both have their staunch adherents. To run a
hands—on tutorial, sdeunning a Vi Tutorial. {@sf{Debian}}: nvi' {@sf{WWW}}:
ftp://mongoose.bostic.com/pub/nvi.tar.gz

Like the Elvis editor, Vim ("Vi improved") is a modern implementation of Vi whose new
features include syntax coloring, scrollbars and menus, mouse support, and built-in help.
{@sf{Debian}}: 'vim' {@sf{WWW}}: http://www.vim.ora/

Wily, an interesting mouse—centric editor, is inspired by the Acme editor from AT&T's Plan 9
experimental operating system. Wily commands consist of various combinations of the three
mouse buttons, called chords, which can be tricky to master. {@sf{Debian}}:

‘wily' {@sf{WWW}}: http://www.cs.su.oz.au/~gary/wily/

Xedit is a simple text editor that comes with, and works in, X. It lets you insert, delete, copy
and paste text as well as open and save files——the very basics. {@sf{Debian}}: “xcontrib'

XEmacs is a version of Emacs with advanced capabilities for use in X, including the ability to
display images. {@sf{Debian}}: ‘emacsen—-common' {@sf{Debian}}:
‘xemacs' {@sf{WWWs}}: http://www.xemacs.org/

(<] [=]

[=<] [Up] [>>] [Top] [Contents] [Index] [2]

11. Text Editing 150

http://elvis.vi-editor.org
http://space.mit.edu/~davis/jed.html
ftp://ftp.std.com/src/editors/
http://www.nano-editor.org/
http://www.nllgg.nl/Ted/
http://www.lightlink.com/hessling/THE/
ftp://mongoose.bostic.com/pub/nvi.tar.gz
http://www.vim.org/
http://www.cs.su.oz.au/~gary/wily/
http://www.xemacs.org/

The Linux Cookbook: Tips and Techniques for Everyday Use:

11.2 Emacs

@sf{Debian}: "'emacsen-common’
@sf{WWW}: “http://www.emacs.org/'

To call Emacs a text editor does not do it justice——it's a large application capable of performing many
functions, including reading email and Usenet news, browsing the World Wide Web, and even perfunctory
psychoanalysis.

There is more than one version of Emacs. GNU Emacs is the Emacs released under the auspices of Richar
Stallman, who wrote the original Emacs predecessor in the 1970s. XEmacs (formerly Lucid Emacs) offers
essentially the same features GNU Emacs does, but also contains its own features for use with the X Windc
System (it also behaves differently from GNU Emacs in some minor ways).

GNU Emacs and XEmacs are by far the most popular emacsen (as they are referred to in number); other
flavors include jed (described in the previous section) and Chet's Emacs, ce, developed by a programmer a
Case Western Reserve University.

Following is a brief introduction to using Emacs, interspersed with the necessary Emacs jargon; following
that are recipes that describe how to use some of Emacs's advanced editing features.

11.2.1 Getting Acquainted with Emacs How to learn Emacs.
11.2.2 Basic Emacs Editing Keys The basic Emacs editing keys.
11.2.3 Making Abbreviations in Emacs Making abbreviations to save time.

11.2.4 Recording and Running Macros in Emacs Making macros to save time.
11.2.5 Inserting Special Characters in Emacs Inserting special characters in Emacs.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.2.1 Getting Acquainted with Emacs

Start Emacs in the usual way, either by choosing it from the menu supplied by your window manager in X, o
by typing its name (in lowercase letters) at a shell prompt.

» To start GNU Emacs at a shell prompt, type:

$ emacs RET

* To start XEmacs at a shell prompt, type:

11. Text Editing 151

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ xemacs RET

Upon startup in X, a typical GNU Emacs window looks like this (the window frame will differ depending on
your window manager):

KN emacs@gatsby.dsl.org [a/fEEd
Buffers Files Tools Edit Search Hule Help [

@elcome to GNU Emacs, one component of a Linux-based GNU system.
The menu bar and scroll bar are sufficient for basic editing with the mouse.

Useful Files menu items:

Exit Emacs {or type Control-x followed by Control-c)

Recover Session recover files you were editing before a crash
Important Help menu items:

Emacs Tutorial Learn-by-doing tutorial for using Emacs efficiently.
(Non)Warranty GNU Emacs comes with ABSOLUTELY NO WARRANTY

Copying Conditions Conditions for redistributing and changing Emacs.
Getting New Yersions How to obtain the latest version of Emacs.

GNU Emacs 20.7.2 (i386-debian-linux-gnu, X toolkit)
of Tue Jun 20 2000 on raven
Copyright (C) 1999 Free Software Foundation, Inc.

—-—:—— kscratchx {(Lisp Interaction)--L1--All-——————-—————————————— ———————
WFor information about the GNU Project and its goals, type C-h C-p.

The welcome message appears when Emacs first starts, and it tells you, among other things, how to run a
tutorial (which we'll look at in just a minute).

The top bar is called the menu bar, and you can pull down its menus with the mouse by left—clicking a menu

and then dragging it down. When you run Emacs in a console, you can't use the mouse to pull down the
menus, but you can access and choose the same menu items in a text menu by tyfiiy F10

11. Text Editing 152

The Linux Cookbook: Tips and Techniques for Everyday Use:

A file or other text open in Emacs is held in its own area called a buffer. By default, the current buffer
appears in the large area underneath the menu bar. To write text in the buffer, just type it. The place in the
buffer where the cursor is at is called point, and is referenced by many Emacs commands.

The horizontal bar near the bottom of the Emacs window and directly underneath the current buffer is called
the mode line; it gives information about the current buffer, including its name, what percentage of the buffe
fits on the screen, what line point is on, and whether or not the buffer is saved to a file.

The mode line also lists the modes active in the buffer. Emacs modes are general states that control the wa
Emacs behaves——for example, when Overwrite mode is set, text you type overwrites the text at point; in
Insert mode (the default), text you type is inserted at point. Usually, either Fundamental mode (the

default) or Text mode will be listed.

You can make the menu bar appear or disappear by toggling Menu bar mode. Typing F10 to activate the

menu pull-downs works whether Menu bar mode is on or off; if it's off, the menu choices will appear in a
new buffer window.

* To turn off the top menu bar, type:

M-x menu-bar-mode RET

(If the menu bar is already turned off, this command will turn it on.)

The echo area is where Emacs writes brief status messages, such as error messages; it is the last line in th
Emacs window. When you type a command that requires input, that input is requested in this area (and whe
that happens, the place you type your input, in the echo area, is then called the minibuffer).

Emacs commands usually begin with a Control or Meta (Escape) key sequence; many commands begin wit
the C—x sequence, which you type by pressing and holding the CTRL key and then pressing the X key (see

sectionTypographical Conventions).

Because Emacs is different in culture from the editors and approach of the Microsoft Windows and Apple
MacOS world, it has gotten a rather unfounded reputation in those corners that it is odd and difficult to use.
This is not so. The keyboard commands to run its various functions are designed for ease of use and easy
recall.

For example, the find—file function prompts for the name of a file and opens a copy of the file in a new
buffer; its keyboard accelerator is C—x C—f (you can keep CTRL depressed while you press and release the
X and F keys).

You can run any Emacs function by typing M—x followed by the function name and pressing RET.

* To run the find—file function, type:

M=x find—file RET

This command runs the find—file function, which prompts for the name of a file and opens a copy of the

11. Text Editing 153

The Linux Cookbook: Tips and Techniques for Everyday Use:

file in a new buffer.

Type C—g in Emacs to quit a function or command; if you make a mistake when typing a command, this is
useful to cancel and abort the keyboard input.

Now that we have run through the essential Emacs terminology, I'll show you how to exit the program—-just
type C—x C-c.

Emacs can have more than one buffer open at once. To switch between buffers, type C-x C-h. Then, give

the name of the buffer to switch to, followed by RET; alternatively, type RET without a buffer name to switch
to the last buffer you had visited. (Viewing a buffer in Emacs is called visiting the buffer.)

 To switch to a buffer called ‘rolo', type:

C-x C-brolo RET

A special buffer called “*scratch*' is for notes and things you don't want to save; it always exists in
Emacs.

* To switch to the *scratch* buffer, type:

C-x C-b *scratch* RET

Any file names you give as an argument to emacs will open in separate buffers:

$ emacs todo rolo /usr/local/src/nirvarna/README RET

(You can also make new buffers and open files in buffers later, of course.)

Emacs comes with an interactive, self-paced tutorial that teaches you how to use the basics. In my
experience, setting aside 25 minutes to go through the tutorial is one of the best things you can do in your
computing career——even if you decide that you don't like Emacs very much, a great many other applications
use Emacs-like keyboard commands and heuristics, so familiarizing yourself with them will always pay off.

To start the tutorial at any time when you are in Emacs, type C-h t.

Incidentally, C-h is the Emacs help key; all help—related commands begin with this key. For example, to
read the Emacs FAQ, type C-h F, and to run the Info documentation browser (which contains The GNU
Emacs Manual), type C-hi.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11. Text Editing 154

The Linux Cookbook: Tips and Techniques for Everyday Use:

11.2.2 Basic Emacs Editing Keys

The following table lists basic editing keys and describes their function. Where two common keystrokes are
available for a function, both are given.

KEYS
@uparroworC-p

@downarroworC—n

@leftarroworC—b

@rightarroworC—f

PgUporC-v
PgDnorM-v
BKSPorC-h
DELorC-d
INS
Shift-INSorC-y
C-SPC
C-_

C-a

C-e

C-g

C-hF

C-h a functionRET

C-hi
C-h k key
C-ht
C-k

C-l

C-t

C-u number
C-w

C—-x C-c

C—x C—ffileRET

C-left—click

11. Text Editing

DESCRIPTION

Move point up to the previous line. [GNU INFO BUG: any <> in the preceding line
should be the one of the cursor arrow keys.]

Move point down to the next line. [GNU INFO BUG: any <> in the preceding line
should be the one of the cursor arrow keys.]

Move point back through the buffer one character to the left. [GNU INFO BUG:
any <> in the preceding line should be the one of the cursor arrow keys.]

Move point forward through the buffer one character to the right. [GNU INFO
BUG: any <> in the preceding line should be the one of the cursor arrow keys.]

Move point forward through the buffer one screenful.
Move point backward through the buffer one screenful.
Delete character to the left of point.

Delete character to the right of point.

Toggles between Insert mode and Overwrite mode.
Yank text in the kill ring at point (see sectiBasting Text).
Set mark (see secti@utting Text).

Undo the last action (control-underscore).

Move point to the beginning of the current line.

Move point to the end of the current line.

Cancel the current command.

Open a copy of the Emacs FAQ in a new buffer.

List all Emacs commands related to function.

Start Info.

Describe key.

Start the Emacs tutorial.

Kill text from point to end of line.

Re-center the text in the Emacs window, placing the line where point is in the
middle of the screen.

Transpose the character at point with the character to the left of point.
Repeat the next command or keystroke you type number times.

Kill text from mark to point.

Save all buffers open in Emacs, and then exit the program.

Open file in a new buffer for editing. To create a new file that does not yet exist,
just specify the file name you want to give it. To browse through your files, type
TAB instead of a file name.

Display a menu of all open buffers, sorted by major mode (works in X only).

155

The Linux Cookbook: Tips and Techniques for Everyday Use:

SHIFT-left—click Display a font selection menu (works in X only).

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

11.2.3 Making Abbreviations in Emacs

An abbrev is a word that is an abbreviation of a (usually) longer word or phrase. Abbrevs exist as a
convenience to you——you can define abbrevs to expand to a long phrase that is inconvenient to type, or yot
can define a misspelling that you tend to make to expand to its correct spelling. Abbrevs only expand when
you have Abbrev mode enabled.

* To turn on Abbrev mode, type:

M-x abbrev—-mode RET

To define an abbrev, type the abbrev you want to use and then type C-x aig. Emacs will prompt in the
minibuffer for the text you want the abbrev to expand to; type that text and then type RET.

» To define “rbf' as an abbrev for 'R. Buckminster Fuller', do the following:

¢ First, type the abbrev itself:

rbf

¢ Next, specify that this text is to be an abbrev; type:

C-x aig

+ Now type the text to expand it to:

Global expansion for "rbf": R. Buckminster Fuller RET

Now, whenever you type “rbf' followed by a whitespace or punctuation character in the current buffer, that
text will expand to the text "R. Buckminster Fuller'.

To save the abbrevs you have defined so that you can use them later, use the

write—abbrev—file function. This saves all of the abbrevs currently defined to a file that you can read
in a future Emacs session. (You can also open the file in a buffer and edit the abbrevs if you like.)

11. Text Editing 156

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To save the abbrevs you have currently defined to a file "~/.misspelling—abbrevs', type:

M-x write—abbrev-file RET ~/.misspelling—abbrevs RET

Then, in a future Emacs session, you can use the read—abbrev-file function to define those abbrevs for
that session.

 To read the abbrevs from the file "~/.misspelling—abbrevs', and define them for the current
session, type:

M-x read—abbrev-file RET ~/.misspelling—abbrevs RET

NOTE: Emacs mode commands are toggles. So to turn off Abbrev mode in a buffer, just type M—x
abbrev—-mode RET again. If you turn Abbrev mode on in that buffer later on during the Emacs session,
the abbrevs will be remembered and will expand again.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.2.4 Recording and Running Macros in Emacs

A macro is like a recording of a sequence of keystrokes——when you run a macro, Emacs executes that key
sequence as if you had typed them.

To begin recording a macro, type C—x (. Then, everything you type is recorded as the macro until you stop
recording by typing C—x). After you have recorded a macro, you can play it back at any time during the

Emacs session by typing C—x e. You can precede it with the universal-argument command, C-u, to
specify a number of times to play it back.

» To record a macro that capitalizes the first word of the current line (M—c capitalizes the word to the
right of point) and then advances to the next line, type:

C-x(C-aM-c C-nC-x)
* To play the macro back 20 times, type:
C-u20C-xe

Macros are primary to how Emacs works—-in fact, the name Emacs is derived from "Editing MACroS',
because the first version of Emacs in 1976 was actually a collection of such macros written for another text
editor.

11. Text Editing 157

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.2.5 Inserting Special Characters in Emacs

There are some characters that you cannot normally type into an Emacs buffer. For example, in a text file,
you can specify a page break by inserting the formfeed character, ASCII C-I or octal code 014; when you
print a file with formfeeds, the current page is ejected at this character and printing is resumed on a new pag
However, C-I has meaning as an Emacs command. To insert a character like this, use the

guoted-insert function, C—q. It takes either a literal keystroke to insert, or the octal code of the
character to insert. It inserts that character at point.

* To insert a formfeed character at point by specifying its actual keystroke (C-I), type:

C—q C-I

* To insert a formfeed character at point by specifying its octal character code, type:

C-q 014 RET

The preceding examples both do the same thing: they insert a formfeed character at point.
An interesting use of C—q is to underline text. To do this, insert a literal C—h character followed by an

underscore ("_") after each character you want to underline.

» To underline the character before point, type:

C-qC-h _

You can then use uto output the text to the screen (see sedtioderlining Text).

Another kind of special character insert you might want to make is for accented characters and other
characters used in various languages.

To insert an accented character, use ISO Accents mode. When this mode is active, you can type a special
accent character followed by the character to be accented, and the proper accented character will be inserte
at point.

The following table shows the special accent characters and the key combinations to use.

[GNU INFO BUG: Info does not currently display accent characters correctly.]

11. Text Editing 158

The Linux Cookbook: Tips and Techniques for Everyday Use:

PREFIX.. PLUS THIS LETTER YIELDS THIS RESULT

" a a
" e é
" [|
" o] 0
" u U
" s 3
' a a
' e é
' [i
' o] 0
' u a
a a
e e
i i
o] 0
u u
~ a a
- c c
~ d
~ n fi
~ t
~ u
~ < <<
~ > >>
~ | i
~ ? ¢
A a a
A e é
A [1
A o] 0
A u a
/ a a
/ e &
/ o] g

When a buffer contains accented characters, it can no longer be saved as plain ASCII text, but must insteac
be saved as text in the ISO-8859-1 character set (see séetiang a Character Chart). When you save a
buffer, Emacs will notify you that it must do this.

11. Text Editing 159

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To type the line "Emacs ist spa@ss'! in the current buffer, type:

M-x iso—accents—mode RET
Emacs ist spa"ss!

In the event that you want to type the literal key combinations that make up an accented character in a buffe
where you have ISO Accents mode on, type the prefix character twice.

« To type the text "'0' (and not the accent character 0) in a buffer while ISO Accents mode is on,
type:

NOTE: GNU Emacs has recently added a number of internationalization functions. A complete discussion o
their use is out of the scope of this book; for more information on this topic, see section International
Character Set Support' in The GNU Emacs Manual.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.3 Running a Vi Tutorial

@sf{Debian}: "nvi'

@sfH{WWW}: ftp://mongoose.bostic.com/pub/nvi.tar.gz

@sfH{WWW}: http://www.cs.cmu.edu/~vaschelp/Editors/Vi/

The Vi editor comes with a hands—on, self—paced tutorial, which you can use in vi to learn how to use it. It's

stored as a compressed file in the “/usr/doc/nvi' directory; copy this file to your home directory,
uncompress it, and open it with vi to start the tutorial.

 To run the vi tutorial, type the following from your home directory:

$ cp /usr/doc/nvilvi.beginner.gz . RET
$ gunzip vi.beginner RET
$ vi vi.beginner RET

NOTE: An advanced tutorial is also available in “/usr/doc/nvi'.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

11. Text Editing 160

ftp://mongoose.bostic.com/pub/nvi.tar.gz
http://www.cs.cmu.edu/~vaschelp/Editors/Vi/

The Linux Cookbook: Tips and Techniques for Everyday Use:

11.4 Selecting Text

In X, you can cut and paste text between other windows, including xterm and Emacs windows. The most
recently selected text is called the X selection.

In the console, you can cut and paste text in the same virtual console or into a different virtual console. To d
this, you need the gpm package installed and set up for your mouse (it's a default, recommended package).

The operations described in this section work the same both in X and in virtual consoles. You cannot
presently cut and paste text between X and a virtual console.

Three buttons on the mouse are used for cutting and pasting. If you have a two—button mouse, your
administrator can set it to emulate three buttons—-to specify the middle button, press the left and right buttol
simultaneously.

Click the left mouse button and drag the mouse over text to select it. You can also double—click the left
mouse button on a word to select that word, and triple—click the left mouse button on a line to select that line
Furthermore, you can click the left mouse button at one end of a portion of text you want to select, and then
click the right mouse button at the other end to select all of the text between the points.

NOTE: In an xterm window, when you're running a tool or application locally in a shell (such as the

lynx Web browser), the left mouse button alone won't work. When this happens, press and hold the
SHIFT key while using the mouse to select text.

11.4.1 Cutting Text Cutting out a selection of text.
11.4.2 Pasting Text Pasting in a selection of text.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.4.1 Cutting Text

You don't have to select text to cut it. At a shell prompt or in Emacs, type C-k to cut the text from the cursor
to the end of the line.
In Emacs parlance, cutting text is known as killing text. Emacs has additional commands for killing text:

* When you have selected an area of text with the mouse as described previously, you can type

Shift—-DEL to delete it.

» You can also click the left mouse button at one end of an area of text and then double—click the right
mouse button at the other end of the area to kill the area of text.

11. Text Editing 161

The Linux Cookbook: Tips and Techniques for Everyday Use:

« Finally, to kill a large portion of text in an Emacs buffer, set the mark at one end of the text by
moving point to that end and typing C-SPC. Then, move point to the other end of the text, and type
C-w to kill it.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.4.2 Pasting Text

@sf{Debian}: “xpaste’

To paste the text that was last selected with the mouse, click the middle mouse button at the place you war
to paste to. You can also use the keyboard by moving the cursor to where you want to paste and then typing
Shift-INS. These commands work both in X and in the console.

In X, to display the contents of the X selection in its own window, run the xpaste X client; its only purpose
in life is to display this text in its window.

In Emacs, pasting text is called yanking the text. Emacs offers the additional key, C-y ("yank"), to yank the
text that was last selected or killed. This key also works in the bash shell, where it pastes the last text that
was killed with C-k in that shell session, if any.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

11.5 Editing Streams of Text

Some of the recipes in this book that work on text use sed, the "stream editor.” It is not a text editor in the
usual sense——you don't open a file in sed and interactively edit it; instead, it performs editing operations on
a stream of text sent to its standard input, and it writes the results to the standard output. This is more like a
filter than an editor, and sed is a useful tool for formatting and searching through text.

"The seder's grab—bag" is a useful collection of sed information including a FAQ and many example scripts.
Thesed'"one-liners" are useful commands for editing and processing text.

See Info file “sed.info', node "Top', for more information on sed usage.

Other tools that are good for stream editing include the AWK and Perl programming languages; to learn moi

about using these powerful languages, | recommend the following books:

* The GNU Awk User's Guide

« Picking Up Perl

11. Text Editing 162

http://seders.icheme.org/
http://seders.icheme.org/
http://seders.icheme.org/
http://www-h.eng.cam.ac.uk/help/tpl/unix/sed.html
http://www.gnu.org/manual/gawk-3.0.3/gawk.html
http://www.gnu.org/manual/gawk-3.0.3/gawk.html
http://www.gnu.org/manual/gawk-3.0.3/gawk.html
http://www.gnu.org/manual/gawk-3.0.3/gawk.html
http://www.gnu.org/manual/gawk-3.0.3/gawk.html
http://www.ebb.org/PickingUpPerl/
http://www.ebb.org/PickingUpPerl/
http://www.ebb.org/PickingUpPerl/

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.6 Concatenating Text
The cat tool gets its name because it concatenates all of the text given to it, outputting the result to the
standard output. It is useful for concatenating files of text together.

For example, suppose you have two files, “early' and “later'. The file "early' contains this text:

This Side of Paradise
The Beautiful and Damned

And the file “later' contains this text:

The Great Gatsby
Tender Is the Night
The Last Tycoon

» To concatenate these files into a new file, "novels', type:

$ cat early later 62; novels RET

This command redirects the standard output to a new file, 'novels', which would then contain the
following text:

This Side of Paradise

The Beautiful and Damned
The Great Gatsby

Tender Is the Night

The Last Tycoon

The files “early' and “later' are not altered.

Had you typed cat later early > novels instead, the files would be concatenated in that reversed
order instead, beginning with “later'; so the file “novels' would contain the following:

The Great Gatsby

Tender Is the Night

The Last Tycoon

This Side of Paradise

The Beautiful and Damned

The following sections give other recipes for concatenating text.

11. Text Editing 163

The Linux Cookbook: Tips and Techniques for Everyday Use:

NOTE: You can also use cat to concatenate files that are not text, but its most popular usage is with text
files. Another way to concatenate files of text in an automated way is to use file inctuséee Including
Text Files.

A similar tool, zcat, reads the contents of compressed files.

11.6.1 Writing Text to Files Writing text to a file.
11.6.2 Appending Text to a File Appending text to the end of a file.

11.6.3 Inserting Text at the Beginning of a File Inserting text to the beginning of a file.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.6.1 Writing Text to Files

Sometimes, it's too much trouble to call up a text editor for a particular job——you just want to write a text file
with two lines in it, say, or you just want to append a text file with one line. There are ways of doing these
kind of micro—editing jobs without a text editor.

To write a text file without using a text editor, redirect the standard output of cat to the file to write. You
can then type your text, typing C—d on a line of its own to end the file. This is useful when you want to
quickly create a small text file, but that is about it; usually, you open or create a text file in a text editor, as
described in the previous sections in this chapter.

» To make a file, ‘'novels’, with some text in it, type:

$ cat 62; novels RET

This Side of Paradise RET

The Beautiful and Damned RET
The Great Gatsby RET

Tender Is the Night RET

C—d

$

In this example, the text file "novels' was created and contains four lines of text (the last line with the
C-d is never part of the file).

Typing text like this without an editor will sometimes do in a pinch but, if you make a mistake, there is not
much recourse besides starting over——you can type C-u to erase the current line, and C—c to abort the who
thing and not write the text to a file at all, but that's about it.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

11. Text Editing 164

The Linux Cookbook: Tips and Techniques for Everyday Use:
11.6.2 Appending Text to a File

To add text to a text file without opening the file in a text editor, use cat with the append operator, “>>'.
(Using >' instead would overwrite the file.)

» To add a line of text to the bottom of file “novels', type:

$ cat 62;62; novels RET
The Last Tycoon RET
C-d

In this example, no files were specified to cat for input, so cat used the standard input; then, one line of
text was typed, and this text was appended to file "novels', the file used in the example of the previous
recipe. So now this file would contain the following:

This Side of Paradise

The Beautiful and Damned
The Great Gatsby

Tender Is the Night

The Last Tycoon

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

11.6.3 Inserting Text at the Beginning of a File

@sfH{WWW}: http://dsl.org/compl/tinyutils/

Inserting text at the beginning of a text file without calling up a text editor is a bit trickier than appending tex

to a file's end—-but it is possible.
To insert one or more lines of text at the beginning of a file, use ins. Give the name of the file in which to
insert text as an argument; ins will read lines of text from the standard input and insert them at the
beginning of the file. (It works by opening the file in ed, a simple line editor.)

Give the EOF—-that is, type C—d on a line by itself—-to signify the end of the lines of text to insert.

» To insert several lines of text at the beginning of the file "novels', type:

$ins novels RET
The Novels of F. Scott Fitzgerald RET

RET
C-d
$

11. Text Editing 165

http://dsl.org/comp/tinyutils/

The Linux Cookbook: Tips and Techniques for Everyday Use:

This command inserts two lines of text at the beginning of novels, the file used in the previous examples in
this section. This file would now contain the following:

The Novels of F. Scott Fitzgerald

This Side of Paradise

The Beautiful and Damned
The Great Gatsby

Tender Is the Night

The Last Tycoon

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

11.7 Including Text Files

@sf{Debian}: ‘m4'

File inclusion is where the contents of a file can be included at a particular place within some other file, just
by specifying the file's name at that place in the other file.

This is useful if you want or need to frequently rearrange divisions or sections of a document, if you need to
keep a document in more than one arrangement, or if you have some sections of text that you frequently
insert in more than one document. For these situations, you can keep each section in a separate file and bu
an include file that contains the file names for the various sections in the order you want to generate that file

To include a file in a text file, specify the file to be included on a line of its own, like this:

include(file)

When you process this file for inclusion, the line with the “include' statement is replaced with the
contents of the file file (whose path is relative to the current directory of the include file).

Use the m4 tool, the GNU macro processor, to process an include file. It takes as an argument the name of
include file, and it outputs the inclusion to the standard output. You can use redirection to redirect the output
to a file.

For example, suppose the file “soups' contains this text:

Clam Chowder
Lobster Bisque
Vegetable

And suppose the file “sandwiches' contains this text:

BLT

11. Text Editing 166

The Linux Cookbook: Tips and Techniques for Everyday Use:

Ham on Rye
Roast Beef

And finally, suppose the file ‘'menu’ contains this text:

Diner Menu For Today

include(soups)

Sandwiches

include(sandwiches)

* To process the file and write to the file ‘'monday.txt', type:

$ m4 menu 62; monday.txt RET

This command writes a new file, ‘'monday.txt', which looks like this:

Diner Menu For Today

Clam Chowder
Lobster Bisque
Vegetable

Sandwiches

BLT
Ham on Rye
Roast Beef

NOTE: You can write more than one include file that will use your files——and the files themselves can have
include files of their own.

This is a fairly simple use of m4; it can do much more, including run commands, manipulate text, and run
custom macros. See Info file ‘'m4.info', node "Top' for more information on this tool.

11. Text Editing 167

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

11. Text Editing 168

12. Grammar and Reference

The tools and resources for writing and editing on Linux—based systems include spell checkers, dictionaries
and reference files. This chapter shows methods for using them.

12.1 Spelling Spell checking.
12.2 Dictionaries
12.3 Checking Grammar Grammar tools.

12.4 Word Lists and Reference Files Word lists and reference files.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12.1 Spelling

There are several ways to spell check text and files on Linux; the following recipes show how to find the
correct spellings of particular words and how to perform batch, interactive, and Emacs—based spell checks.

The system dictionary file, “/usr/dict/words' ,(18) is nothing more than a word list (albeit a very large
one), sorted in alphabetical order and containing one word per line. Words that are correct regardless of cas
are listed in lowercase letters, and words that rely on some form of capitalization in order to be correct (suct
as proper nouns) appear in that form. All of the Linux spelling tools use this text file to check spelling; if a
word does not appear in the dictionary file, it is considered to be misspelled.

NOTE: None of the computerized spell-check tools will correct your writing if you are using the wrong

word to begin with——for example, if you have “there' when you mean “their', the computer will not
catch it (yet!).

12.1.1 Finding the Correct Spelling of a Word Spell checking a word.

12.1.2 Listing the Misspellings in a Text Spell checking a file.

12.1.3 Keeping a Spelling Word List Keeping a personal dictionary.
12.1.4 Interactive Spell Checking Interactive spell checking.
12.1.5 Spell Checking in Emacs Spell checking in Emacs.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12. Grammar and Reference 169

The Linux Cookbook: Tips and Techniques for Everyday Use:
12.1.1 Finding the Correct Spelling of a Word

If you're unsure whether or not you're using the correct spelling of a word, use spell to find out.
spell reads from the standard input and outputs any words not found in the system dictionary——so if a
word is misspelled, it will be echoed back on the screen after you type it.

» For example, to check whether the word “occurance' is misspelled, type:

$ spell RET
occurance RET
occurance

c—d

$

In the example, spell echoed the word "occurance’, meaning that this word was not in the system
dictionary and therefore was quite likely a misspelling. Then, C—d was typed to exit spell.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12.1.2 Listing the Misspellings in a Text

To output a list of misspelled words in a file, give the name of the file to check as an argument to spell.
Any misspelled words in the file are output, each on a line of its own and in the order that they appear in the
file.

* To spell check the file “fall-lecture.draft', type:

$ spell fall-lecture.draft RET
occurance

willl

occurance

$

In this example, three words are output: “occurance’, "willl' and “occurance' again, meaning

that these three words were found in “fall-lecture.draft’, in that order, and were not in the system
dictionary (and so were probably misspelled). Note that the misspelling “occurance' appears twice in the
file.

To correct the misspellings, you could then open the file in your preferred text editor and edit it. Later in this
section I'll describe an interactive spell checker that allows you to correct misspellings as they are found. Sti
another option is to use a text editor with spell-checking facilities built in, such as Emacs.

 To spell check the file “fall-lecture.draft', and output any possibly misspelled words to a

12. Grammar and Reference 170

The Linux Cookbook: Tips and Techniques for Everyday Use:

file “fall-lecture.spelling', type:

$ spell fall-lecture.draft 62; fall-lecture.spelling RET

In this example, the standard output redirection character, *>', is used to redirect the output to a file (see
sectionRedirecting Output to a File).

To output an alphabetical list of the misspelled words, pipe the output to sort; then pipe the sorted output to
the uniq filter to remove duplicates from the list (uniq removes duplicate adjacent lines from its input,
outputting the "unique” lines).

» To output a sorted list of the misspelled words that are in the file “fall-lecture.draft’, type:

$ spell fall-lecture.draft | sort | uniq RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12.1.3 Keeping a Spelling Word List

The stock American English dictionary installed with Linux—based systems includes over 45,000 words.
However large that number may seem, a lot of words are invariably left out——including slang, jargon, and
some proper names.

You can view the system dictionary as you would any other text file, but users never edit this file to add
words to it(19) Instead, you add new words to your own personal dictionary, a file in the same format as the
system dictionary, but kept in your home directory as the file "~/.ispell_default'.

Users can have their own personal dictionary; the spelling commands discussed in this chapter automaticall
use your personal dictionary, if you have one, in addition to the system dictionary.

You build your personal dictionary using the i and u options of ispell, which insert words into your
personal dictionary. Use these options either with the stand-alone tool or with the various ispell Emacs

functions (seénteractive Spell CheckingndSpell Checking in Emacs).

NOTE: You can also add (or remove) words by manually editing the file with a text editor, but take care so
that the list is kept in alphabetical order!

Over time, personal dictionaries begin to look very personal, as a reflection of their owners; Gregory Cosmo
Haun made a work of art by photographing the portraits of a dozen users superimposed with listings of their
personal dictionaries (accessible online at http://www.reed.edu/~cosmo/art/DictPort.html).

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12. Grammar and Reference 171

http://www.reed.edu/~cosmo/art/DictPort.html

The Linux Cookbook: Tips and Techniques for Everyday Use:
12.1.4 Interactive Spell Checking

Use ispell to spell check a file interactively, so that every time a misspelling is found, you're given a
chance to replace it then and there.

 To interactively spell check “fall-lecture.notes', type:

$ ispell fall-lecture.notes RET

When you type this, ispell begins checking the file. It stops at the first misspelling it finds:

lecutres File: fall-lecture,notes

The focus of my series of this fall are the aspects of the novel,

0: lectures

[SP] <number> R}epl Adccept I)nzert L)ookup Uincap Qluit e{X})it or ? for help

On the top line of the screen, ispell displays the misspelled word, followed by the name of the file.
Underneath this is the sentence in which the misspelling appears, with the word in question highlighted.
Following this is a list of suggested words, each offset by a number—-in this example, ispell has only one
suggestion: “lectures'.

To replace a misspelling with a suggested word, type the number that corresponds to the suggested word (i
this example, you would type 0 to replace the misspelling with “lectures'). You only need to type the
number of your selection——a RET is not required.

You can also type a correction yourself; this is useful when ispell either offers no suggestions, or when it
does and the word you want is not one of them. To do this, type r (for "replace") and then type the
replacement word, followed by RET.

Sometimes, ispell will question a word that you may not want to count as a misspelling, such as proper

names and the like——words that don't appear in the system dictionary. There are a few things you can do in
such cases, as follows.

12. Grammar and Reference 172

The Linux Cookbook: Tips and Techniques for Everyday Use:

To accept a misspelled word as correct for the current ispell session only, type a; from then on during the
current session, this word will be considered correct.

If, however, you want ispell (and spell, and all other tools that access the system dictionary) to

remember this word as being correct for this and all future sessions, insert the word in your own personal
dictionary. Type u to insert a copy of the word uncapitalized, in all lowercase letters——this way, even if the
word is capitalized at the beginning of a sentence, the lowercase version of the word is saved. From then or
in the current ispell session and in future sessions, this word, regardless of case, will be considered

correct.

When case is important to the spelling——for example, in a word that is a proper name such as “Seattle',

or a word with mixed case, such as "LaTeX'-—-type i to insert a copy of the word in your personal
dictionary with its case just as it appears; this way, words spelled with the same letters but with different cas
will be considered misspellings.

When ispell finishes spell checking a file, it saves its changes to the file and then exits. It also makes a
copy of the original file, without the changes applied; this file has the same name as the original but with
“.bak' added to the end--so in our example, the backup file is called “fall-lecture.notes.bak'.

This is useful if you regret the changes you've made and want to restore the file to how it was before you
mucked it up——just remove the spell-checked file and then rename the ".bak' file to its original name.

The following table is a reference to the ispell key commands.

KEY COMMAND

SPC Accept misspelled word as correct, but only for this particular instance.

number Replace the misspelled word with the suggestion that corresponds to the given number.
? Display a help screen.

a Accept misspelled word as correct for the remainder of this ispell session.

[Accept misspelled word as correct and add it to your private dictionary with the capitalization as it
appears.

I Look up words in the system dictionary according to a pattern you then give.

q Quit checking and restore the file to how it was before this session.

r Replace misspelled word with a word you type.

u Accept misspelled word as correct and add it to your private dictionary in all lowercase letters.
X Save the changes thus made, and then stop checking this file.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12.1.5 Spell Checking in Emacs

Emacs has several useful commands for spell checking. The ispell-word, ispell-region, and
ispell-buffer functions, as you might guess from their names, use the ispell command inside Emacs
to check portions of the current buffer.

12. Grammar and Reference 173

The Linux Cookbook: Tips and Techniques for Everyday Use:

The first command, ispell-word, checks the spelling of the word at point; if there is no word at point, it
checks the first word to the left of point. This command has a keyboard shortcut, M—$. The second comman
ispell-region, checks the spelling of all words in the currently selected region of text. The third

command, ispell-buffer, checks the spelling of the entire buffer.

» To check the spelling of the word at point, type:

M-x ispell-word RET

* To check the spelling of all words in the currently selected region of text, type:

M-x ispell-region RET

» To check the spelling of all words in the current buffer, type:

M-x ispell-buffer RET

Flyspell mode is another useful Emacs spelling command that, when set in a buffer, highlights misspelled
words. This function is useful when you are writing a first draft in a buffer, because it lets you catch
misspellings as you type them.

 To turn on Flyspell mode in a buffer, type:

M-x flyspell-mode RET

NOTE: This command is a toggle; run it again to turn it off.

To correct a word in Flyspell mode, click and release the middle mouse button on the word to pull up a
menu of suggestions; you then use the mouse to select the replacement word or add it to your personal
dictionary.

If there are words you frequently misspell, you can define abbrevs for them (see_section Making
Abbreviations in Emacs). Then, when you type the misspelled word, Emacs will automatically replace it with
the correct spelling.

Finally, if you prefer the sparse, non—interactive interface of spell, you can use the Emacs interfaces to that
command instead: Spell word, Spell region, and Spell buffer. When any of these commands

find a misspelling, they prompt for a replacement in the minibuffer but do not offer suggestions or provide
any of ispell's other features.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12. Grammar and Reference 174

The Linux Cookbook: Tips and Techniques for Everyday Use:

12.2 Dictionaries

@sf{Debian}: "'wordnet-dev'

@sf{WWW}: http://www.cogsci.princeton.edu/~wn/
The term dictionary on Linux systems generally refers to one of two things: the traditional Unix-style

dictionary, which is an alphabetically sorted word list containing no actual definitions, and the newer
database-style dictionary that contains the headwords as well as their definitions. The latter is the kind of
thing most people mean when they talk about dictionaries. (When most Unix folk talk about dictionaries,
however, they almost always mean the former.)

WordNet is a lexical reference system in the form of a database containing thousands of words arranged in
synonym sets. You can search the database and output the results in text with the wn tool or the wnb X cliel

(the "WordNet browser").

Use of the X client is fairly straightforward——type a word in the dialog box near the top of the screen,
followed by RET, to get its definition(s), which are displayed in the large output window underneath the

dialog box.

For example, this is what appears when you do a search for the definition of the word “browse":

File History Options Help

Search Word: [browse

Searches for browse: Nounl Verbl Senses:|

The noun browse has 2 senses (no senses from tagged texts)

1. hrowse, browsing —— (reading superficially or at random)
2. hbrowse, browsing —— (the act of feeding by continual nibbling)

The verb browse has 4 senses {no senses from tagged texts)

1. shop, browse —— (shop around; not necessarily buying)

2. crop, browse, graze, range, pasture —— {feed as in a meadow or pasture; "the herd was grazing")
3. browse —— (look around casually and randomly, as through files and directories on a computer)
4. browse, graze —— (eat lightly, try different dishes)

Overview of browse

Between the dialog box and the output window, there are menus for searching for synonyms and other worc
senses. A separate menu is given for each part of speech a word may have; in the preceding example, the
word “browse' can be either a noun or a verb, so two menus are shown.

To get a list of all word sense information available for a given word, run wn with the name of the word as ar

argument. This outputs a list of all word sense information available for the word, with each possible sense
preceded with the name of the option to use to output it.

12. Grammar and Reference 175

http://www.cogsci.princeton.edu/~wn/

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To output a list of word senses available for the word “browse', type:

$ wn browse RET

The following sections show how to use wn on the command line.

NOTE: For more information on WordNet, consult the wnintromapage (see sectidReading a Page
from the System Manual).

12.2.1 Listing Words that Match a Pattern Listing words that match a pattern.
12.2.2 Listing the Definitions of a Word Looking up a word's definition.
12.2.3 Listing the Synonyms of a Word Finding Synonymes.

12.2.4 Listing the Antonyms of a Word Finding Antonyms.

12.2.5 Listing the Hypernyms of a Word Finding Hypernyms.
12.2.6 Online Dictionaries Free dictionaries on the WWW.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12.2.1 Listing Words that Match a Pattern

There are several ways to search for and output words from the system dictionary.

Use look to output a list of words in the system dictionary that begin with a given string—-this is useful for
finding words that begin with a particular phrase or prefix. Give the string as an argument; it is not case
sensitive.

* To output a list of words from the dictionary that begin with the string "homew', type:

$ look homew RET

This command outputs words like “homeward' and “homework'.

Since the system dictionary is an ordinary text file, you can also use grep to search it for words that match a
given pattern or regular expression (see se®iegular Expressions——Matching Text Patterns).

* To list all words in the dictionary that contain the string “dont’, regardless of case, type:

$ grep —i dont /usr/dict/words RET

12. Grammar and Reference 176

The Linux Cookbook: Tips and Techniques for Everyday Use:
* To list all words in the dictionary that end with “ing’, type:

$ grep ing” /usr/dict/words RET

* To list all of the words that are composed only of vowels, type:

$ grep —i "Maeiou]*$' /usr/dict/words RET

To find some words that rhyme with a given word, use grep to search “/usr/dict/words' for words
ending in the same last few characters as the word they should rhyme with (seeMsgctiomy Lines

Ending with Certain Text).

 To output a list of words that rhyme with “friend’, search “/usr/dict/words' for lines
ending with “end":
$ grep 'end$' /usr/dict/words RET
Finally, to do a search on the WordNet dictionary, use wn with one of the "—grep' options. When you give

some text to search for as an argument, this command does the equivalent search as look, except only the

particular kind of word sense you specify is searched: "—grepn' searches nouns, "—grepv' searches
verbs, "—grepa’ searches adjectives, and "—grepr' searches adverbs. You can combine options to search

multiple word senses.
» To search the WordNet dictionary for nouns that begin with "homew', type:

$ wn homew —grepn RET

» To search the WordNet dictionary for both nouns and adjectives that begin with "homew’, type:

$ wn homew —grepn —grepa RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12.2.2 Listing the Definitions of a Word

To list the definitions of a word, give the word as an argument to wn, followed by the “—over' option.

* To list the definitions of the word “slope’, type:

12. Grammar and Reference 177

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ wn slope —over RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12.2.3 Listing the Synonyms of a Word

A synonym of a word is a different word with a similar meaning that can be used in place of the first word in
some context. To output synonyms for a word with wn, give the word as an argument, followed by one of the
following options: "—synsn' for nouns, "—synsv' for verbs, "—synsa' for adjectives, and

“—sysnr' for adverbs.

* To output all of the synonyms for the noun “break’, type:

$ wn break —synsn RET

» To output all of the synonyms for the verb “break’, type:

$ wn break —synsv RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12.2.4 Listing the Antonyms of a Word

An antonym of a word is a different word that has the opposite meaning of the first in some context. To
output antonyms for a word with wn, give the word as an argument, followed by one the following options:
“—antsv' for verbs, "—antsa' for adjectives, and "—antsr' for adverbs.

 To output all of the antonyms for the adjective “sad', type:

$ wn sad —antsa RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12. Grammar and Reference 178

The Linux Cookbook: Tips and Techniques for Everyday Use:
12.2.5 Listing the Hypernyms of a Word

A hypernym of a word is a related term whose meaning is more general than the given word. (For example,
the words ‘'mammal’ and “animal' are hypernyms of the word “cat'.)

To output hypernyms for a word with wn, use one of the following options: "—hypen' for nouns and
“~hypeV' for verbs.

 To output all of the hypernyms for the noun “cat', type:

$ wn cat —hypen RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12.2.6 Online Dictionaries

@sf{Debian} “dict'

@sf{WWW}: http://www.dict.org/

The DICT Development Group has a number of free dictionaries on their Web_site at http://www.dict.org/.
On that page, you can look up the definitions of words (including thesaurus and other searches) from a
dictionary that contains over 300,000 headwords, or make a copy of their dictionary for use on your own
system. A dict client exists for accessing DICT servers and outputting definitions locally; this tool is
available in the “dict' package.

DICT also has a number of specialized dictionaries that are plain text files (including the author's Free
Journalism Dictionary, containing jargon and terms used in the journalism and publishing professions). Thei
FILE project, The Free Internet Lexicon and Encyclopedia, is an effort to build a free, open source collection
of modern—word, idiom, and jargon dictionaries. FILE is a volunteer effort and depends on the support of
scholars and lexicographers; the DICT pages contain information on how to help contribute to this worthy
project.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12.3 Checking Grammar

@sfH{WWW}: http://www.gnu.ora/software/diction/diction.html
Two venerable Unix tools for checking writing have recently been made available for Linux—based systems

style and diction.

12. Grammar and Reference 179

http://www.dict.org/
http://www.dict.org/
http://www.gnu.org/software/diction/diction.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

Old-timers probably remember these names—-the originals came with AT&T UNIX as part of the
much-loved "Writer's Workbench" (WWB) suite of tools back in the late 1970s and early(2080s.

AT&T "unbundled" the Writer's Workbench from their UNIX version 7 product, and as the many flavors of
Unix blossomed over the years, these tools were lost by the wayside——eventually becoming the stuff of Uni»
lore.

In 1997, Michael Haardt wrote new Linux versions of these tools from scratch. They support both the Englis
and German languages, and they're now part of the GNU Project.

Two additional commands that were part of the Writer's Workbench have long been standard on Linux:
look and spell, described previously in this chapter.

12.3.1 Checking Text for Misused Phrases Checking for misused phrases.
12.3.2 Checking Text for Doubled Words Checking for doubled words.

12.3.3 Checking Text for Readability Checking writing style.
12.3.4 Checking Text for Difficult Sentences Checking for difficult sentences.

12.3.5 Checking Text for Long Sentences Checking for long sentences.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12.3.1 Checking Text for Misused Phrases
Use diction to check for wordy, trite, clichéd, or misused phrases in a text. It checks for all the kind of
expressions William Strunk warned us about inEl@ments of Style.
According to The UNIX Environment, by Andrew Walker, the diction tool that came with the old Writer's
Workbench just found the phrases, and a separate command called suggest would output suggestions. In
the GNU version that works for Linux systems, both functions have been combined in the single

diction command.

In GNU diction, the words or phrases are enclosed in brackets “[like this]'. If diction has any
suggested replacements, it gives them preceded by a right arrow, "—> like this'.

When checking more than just a screenful of text, you'll want to pipe the output to less so that you can
peruse it on the screen (see secherusing Text), or pipe the output to a file for later examination.

» To check file “dissertation' for clichés or other misused phrases, type:

$ diction dissertation | less RET

* To check file "dissertation’ for clichés or other misused phrases, and write the output to a file

12. Grammar and Reference 180

http://coba.shsu.edu/help/strunk/
http://coba.shsu.edu/help/strunk/
http://coba.shsu.edu/help/strunk/

The Linux Cookbook: Tips and Techniques for Everyday Use:

called “dissertation.diction’, type:

$ diction dissertation 62; dissertation.diction RET

If you don't specify a file name, diction reads text from the standard input until you type C-d on a line by
itself. This is especially useful when you want to check a single sentence:

$ diction RET

Let us ask the question we wish to state. RET
(stdin):1: Let us [ask the question —62; ask]
[we wish to state —62; (cliche, avoid)].

C-d

$

To check the text of a Web page, use the text—only Web browser lynx with the "—~dump' and
“—nolist' options to output the plain text of a given URL, and pipe this output to diction. (If you
expect there to be a lot of output, add another pipe at the end to less so you can peruse it.)

To peruse a copy of the text_of http://example.org/1.html with markings for possible wordy and misused
phrases, type:

$ lynx —dump —nolist http://example.org/1.html | diction | less RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12.3.2 Checking Text for Doubled Words

One of the things that diction looks for is doubled words——words repeated twice in a row. If it finds such
a sequence, it encloses the second member of the doubled pair in brackets, followed by a right arrow and tt
text "Double word', like "this [<i>this —> Double word.]'.

To check a text file for doubled words only, and not for any of the other things diction checks, use
grep to find only those lines in diction's output that contain the text "Double word', if any.

* To output all lines containing double words in the file "dissertation’, type:

$ diction dissertation | grep 'Double word' RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12. Grammar and Reference 181

http://example.org/1.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

12.3.3 Checking Text for Readability

The style command analyzes the writing style of a given text. It performs a number of readability tests on
the text and outputs their results, and it gives some statistical information about the sentences of the text.
Give as an argument the name of the text file to check.

» To check the readability of the file “dissertation’, type:

$ style dissertation RET

Like diction, style reads text from the standard input if no text is given——this is useful for the end of a
pipeline, or for checking the writing style of a particular sentence or other text you type.

The sentence characteristics of the text that style outputs are as follows:

* Number of characters
« Number of words, their average length, and their average number of syllables
* Number of sentences and average length in words
* Number of short and long sentences
* Number of paragraphs and average length in sentences
* Number of questions and imperatives
The various readability formulas that style uses and outputs are as follows:
« Kincaid formula, originally developed for Navy training manuals; a good readability for technical
documentation
» Automated Readability Index (ARI)
» Coleman-Liau formula

 Flesch Reading Ease Score, which gives an approximation of readability from O (difficult) to 100
(easy)

* Fog Index, which gives a school-grade reading level
« WSTF Index, a readability indicator for German documents

* Wheeler-Smith Index, Lix formula, and SMOG-Grading tests, all readability indicators that give a
school-grade reading level

12. Grammar and Reference 182

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12.3.4 Checking Text for Difficult Sentences

To output just the "difficult" sentences of a text, use style with the "—r' option followed by a number;
style will output only those sentences whose Automated Readability Index (ARI) is greater than the
number you give.

» To output all sentences in the file "dissertation' whose ARI is greater than a value of 20, type:

$ style -r 20 dissertation RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12.3.5 Checking Text for Long Sentences

Use style to output sentences longer than a certain length by giving the minimum number of words as an
argument to the "—I' option.

» To output all sentences longer than 14 words in the file “dissertation’, type:

$ style —I 14 dissertation RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

12.4 Word Lists and Reference Files

@sf{Debian}: "miscfiles'

@sf{WWW}: ftp://ftp.gnu.org/pub/anu/miscfiles/miscfiles—1.1.tar.qz

The GNU Miscfiles are a collection of text files containing various facts and reference material, such as
common abbreviations, telephone area codes, and English connective phrases.

The files are stored in the “/usr/share/misc' directory, and they are all compressed; use zless to
peruse them (see sectiBrrusing Text).

The following table lists the files in “/usr/share/misc' and describes their contents.

12. Grammar and Reference 183

ftp://ftp.gnu.org/pub/gnu/miscfiles/miscfiles-1.1.tar.gz

The Linux Cookbook: Tips and Techniques for Everyday Use:

FILE DESCRIPTION
GNU-manifesto.gz The GNU Manifesto.
abbrevs.talk.gzabbrevs.gen.gz Collections of common abbreviations used in electronic

communication. (This is the place to look to find the secrets of
"TTYL'and 'LOL".)
airport.gz List of three-letter city codes for some of the major airports.

The city code is useful for querying the National Weather
Service computers to get the latest weather report for your

region.

ascii.gz A chart of the ASCII character set.

birthtoken.gz The traditional stone and flower tokens for each month.

cities.dat.gz The population, political coordinates (nation, region), and
geographic coordinates (latitude, longitude) of many major
cities.

inter.phone.gz International country and city telephone codes.

languages.gz Two-letter codes for languages, from 1SO 639.

latinl.gz A chart of the extended ASCII character set, also known as the
ISO 8859 (“"Latin—1") character set.

mailinglists.gz Description of all the public Project GNU-related mailing lists.

na.phone.gz North American (+1) telephone area codes.

operator.gz Precedence table for operators in the C language.

postal.codes.gz Postal codes for U.S. and Mexican states and Canadian
provinces.

us—constitution.gz The Constitution of the United States of America (no Bill of

Rights, though). (On Debian systems, this file is placed in
“lusr/share/state".)

us—declaration.gz The Declaration of Independence of the Thirteen Colonies. (On
Debian systems, this file is placed in
“Jusr/share/state'.)

rfc—index.txt Indexes of Internet standardization Request For Comments
(RFC) documents. (On Debian systems, this file is placed in
“lusr/share/rfc').

zipcodes.gz U.S. five—digit Zip codes.

“miscfiles' is not the only reference package available for Debian systems, though; other related
packages include the following:

PACKAGE DESCRIPTION

doc-iana Internet protocol parameter registry documents, as published by the Internet Assigned Number:
Authority.

doc-rfc A collection of important RFCs, stored in “/usr/share/rfc'.
jargon The "Jargon file," which is the definitive dictionary of hacker slang.
vera List of computer acronyms.

12. Grammar and Reference 184

The Linux Cookbook: Tips and Techniques for Everyday Use:

NOTE: The official GNU miscfiles distribution also includes the Jargon file and the
“/usr/dict/words' dictionary file, which are available in separate packages for Debian, and are
removed from the Debian “miscfiles' distribution. “/usr/dict/words' is part of the standard
spelling packages, and the Jargon file comes in the optional “jargon' package, and installs in

“lusr/shareljargon'.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

12. Grammar and Reference 185

13. Analyzing Text

There are many ways to use command-line tools to analyze text in various ways, such as counting the
number of words in a text, creating a concordance, and comparing texts to see if (and where) they differ.
There are also other tricks you can do with text that count as analysis, such as finding anagrams and
palindromes, or cutting up text to generate unexpected combinations of words. This chapter covers all these
topics.

13.1 Counting Text Counting words, lines and characters.
13.2 Making a Concordance of a Text Making a text concordance.
13.3 Text Relevance Finding similar or relevant text.
13.4 Finding Anagrams in Text Finding anagrams.
13.5 Finding Palindromes in Text Finding palindromes.
13.6 Text Cut-Ups Cutting up text.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

13.1 Counting Text

Use the "word count" tool, wc, to count characters, words, and lines in text.
Give the name of a file as an argument; if none is given, wc works on standard input. By default, wc outputs

three columns, displaying the counts for lines, words, and characters in the text.

* To output the number of lines, words, and characters in file “outline’, type:

$ wce outline RET

The following subsections describe how to specify just one kind of count with wc, and how to count text in
Emacs.

NOTE: You can get a count of how many differgmirds are in a text, too——spaking a Concordance of a

Text. To count the average length of words, sentences, and paragraphs, us€ssglsection Checking
Text for Readability).

13.1.1 Counting the Characters in a Text Counting characters.
13.1.2 Counting the Words in a Text Counting words.

13. Analyzing Text 186

The Linux Cookbook: Tips and Techniques for Everyday Use:

13.1.3 Counting the Lines in a Text Counting lines.
13.1.4 Counting the Occurrences of Counting the number of some text string.
Something

13.1.5 Counting Lines per Page in Emacs Counting pages in Emacs.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

13.1.1 Counting the Characters in a Text
Use wc with the "—c' option to specify that just the number of characters be counted and output.

* To output the number of characters in file "classified.ad', type:

$ wec —c classified.ad RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13.1.2 Counting the Words in a Text
Use wc with the “—w' option to specify that just the number of words be counted and output.

» To output the number of words in the file “story', type:

$ wc -w story RET

To output counts for several files, first concatenate the files with cat, and then pipe the output to wc.

 To output the combined number of words for all the files with a ".txt' file name extension in the
current directory, type:

$ cat *.txt | we -w RET

NOTE: To read more about concatenation with ¢aeeConcatenating Text.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13. Analyzing Text 187

The Linux Cookbook: Tips and Techniques for Everyday Use:
13.1.3 Counting the Lines in a Text
Use wc with the "—I' option to specify that just the number of lines be counted and output.

» To output the number of lines in the file “outline', type:

$ wc -1 outline RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13.1.4 Counting the Occurrences of Something

To find the number of occurrences of some text string or pattern in a file or files, use grep to search the
file(s) for the text string, and pipe the output to wc with the "—I' option.

* To find the number of lines in the file “outline' that contain the string “chapter', type:

$ grep chapter outline | we - RET

NOTE: For more recipes for searching text, and more about geggSearching Text.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

13.1.5 Counting Lines per Page in Emacs

The count-lines—page function in Emacs outputs in the minibuffer the number of lines on the current
page(as delimited by pagebreak characters, if any——-see s@aiminating Text), followed by the number
of lines in the buffer before the line that point is on, and the number of lines in the buffer after point.

» To count the number of lines per page in the current buffer in Emacs, type:
C—xl
Emacs outputs the number of lines per page of the current buffer in the echo area.

For example, if the output in the minibuffer is

13. Analyzing Text 188

The Linux Cookbook: Tips and Techniques for Everyday Use:

Page has 351 lines (69 + 283)

this means that the current page contains 351 lines, and point is on line number 70——there are 69 lines befc
this line, and 283 lines after this line.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13.2 Making a Concordance of a Text

A concordance is an index of all the words in a text, along with their contexts. A concordance-like
functionality——an alphabetical listing of all words in a text and their frequency——can be made fairly easily
with some basic shell tools: tr, sort, and uniqg.

 To output a word-frequency list of the text file “naked_lunch’, type:

$tr''"RET
62; ' 60; naked_lunch | sort | unig —c RET

These commands translate all space characters to newline characters, outputting the text with each word or
its own line; this is then sorted alphabetically, and that output is passed to unig, which outputs only the
unique lines——that is, all non—duplicate lines——while the "—c' option precedes each line with its count (the
number of times it occurs in the text).

To get a word frequency count——that is, the total number of different words in a text——just pipe the output of

the frequency list to wc with the "—I' option. This counts all the lines of its input, which in this case will be
the list of unique words, one per line.

» To output a count of the number of unique words in the text file "naked_lunch’, type:

$tr''"RET
62; ' 60; naked_lunch | sort | uniq —c | wc -I RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13.3 Text Relevance

The following recipes show how to analyze a given text for its relevancy to other text, either to keywords or
to whole files of text.

You can also use the diff family of tools to analyze differences in text; those tools are especially good for

13. Analyzing Text 189

The Linux Cookbook: Tips and Techniques for Everyday Use:

comparing different revisions of the same file (see se@mmparing Files).

13.3.1 Sorting Text in Order of Relevance Sorting text by relevance.
13.3.2 Listing Relevant Files in Emacs An Emacs tool for finding relevant text.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

13.3.1 Sorting Text in Order of Relevance

@sf{Debian}: “rel’

@sfH{WWW}: http://www.johncon.com/

Use rel to analyze text files for relevance to a given set of keywords. It outputs the names of those files that
are relevant to the given keywords, ranked in order of relevance; if a file does not meet the criteria, it is not
output in the relevance listing.

rel takes as an option the keyword to search for in quotes; you can build a boolean expression by grouping
multiple keywords in parentheses and using any of the following operators between them:

OPERATORDESCRIPTION
| Logical "or."

& Logical "and."

! Logical "not."

Give as arguments the names of the files to rank.

« To rank the files “report.a’, ‘report.b’, and ‘report.c' in order of relevance to the
keywords “saving' and “profit', type:

$ rel "(saving profit)" report.a report.b report.c RET

Give the name of a directory tree to analyze all files in the directory tree.

» To output a list of any files containing either “invitation' or “request' in the
“~/mail' directory, ranked in order of relevancy, type:

$ rel "(invitation | request)" ~/mail RET

» To output a list of any files containing “invitation' and not “wedding' in the
“~/mail' directory, ranked in order of relevancy, type:

13. Analyzing Text 190

http://www.johncon.com/

The Linux Cookbook: Tips and Techniques for Everyday Use:
$ rel “(invitation ! wedding)" ~/mail RET

» To output a list of any files containing “invitation' and “party' in the "~/mail’ directory,
ranked in order of relevancy, type:

$ rel "(invitation party)" ~/mail RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

13.3.2 Listing Relevant Files in Emacs

@sf{Debian}: ‘remembrance—agent'
@sfH{WWW}: http://www.media.mit.edu/~rhodes/RA/
The purpose of the Remembrance Agent is to analyze the text you type in an Emacs session and, in the

background, find similar or relevant passages of text within your other files. It then outputs in a smaller
window a list of suggestions——those files that it has found——which you can open in a new buffer.
When installing the Remembrance Agent, you create three databases of the files to use when making
relevance suggestions; when remembrance—agent is running, it searches these three databases in

parallel, looking for relevant text. You could create, for example, one database of saved email, one of your
own writings, and one of saved documents.

» To toggle the Remembrance Agent in the current buffer, type:

C-crt

When remembrance—agent is running, suggested buffers will be displayed in the small
“*Remembrance*' buffer at the bottom of the screen. To open a suggestion in a new buffer, type C—cr
number, where number is the number of the suggestion.

» To open the second suggested file in a new buffer, type:

C-cr2

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13. Analyzing Text 191

http://www.media.mit.edu/~rhodes/RA/

The Linux Cookbook: Tips and Techniques for Everyday Use:

13.4 Finding Anagrams in Text

@sf{Debian}: "an'
An anagram is a word or phrase whose characters consist entirely of all the characters of a given word or
phrase——for example, “stop' and "tops' are both anagrams of “pots'.

Use an to find and output anagrams. Give as an argument the word or quoted phrase to use; an writes its
results to the standard output.

» To output all anagrams of the word “lake’, type:

$ an lake RET

« To output all anagrams of the phrase “lakes and oceans', type:

$ an 'lakes and oceans' RET

To limit the anagrams output to those containing a given string, specify that string with the “—c' option.

 To output only anagrams of the phrase “lakes and oceans' which contain the string “seas',
type:

$ an —c seas 'lakes and oceans' RET

To print all of the words that some or all letters in a given word or phrase can make, use the "—w' option.
This outputs words that are not anagrams, since anagrams must contain all of the letters of the other word ¢
phrase.

» To output all of the words that can be made from the letters of the word “seas’, type:

$ an -w seas RET

This command outputs all of the words that can be formed from all or some of the characters in “seas’,
including "see' and "as'.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13. Analyzing Text 192

The Linux Cookbook: Tips and Techniques for Everyday Use:

13.5 Finding Palindromes in Text

A palindrome is a word that reads the same both forwards and backwards; for example, "Mom," "madam,"

and "nun" are all palindromes.

To find palindromes in a file, use this simple Perl "one-liner," and substitute file for the name of the file to
check:

perl —Ine 'print if $_ eq reverse' file

To check for palindromes in the standard input, specify —' as the file name to check. This is useful for
putting at the end of a pipeline.

 To output all of the palindromes in the system dictionary, type:

$ perl —Ine 'print if $_ eq reverse' /usr/dict/words RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

13.6 Text Cut-Ups

A cut-up is a random rearrangement of a physical layout of text, made with the intention of finding unique ol
interesting phrases in the rearrangement. Software for rearranging text in random ways has existed since th
earliest text—processing tools; the popularity of these tools will never die.

The cut-up technique in literature was discovered by painter Brion Gysin and American writer William S.
Burroughs in 1959; they believed it brought the montage technigue of painting to the written word.

"All writing is in fact cut-ups," Burroughs wrof@.1) "A collage of words read heard overheard ... [u]se of
scissors renders the process explicit and subject to extension and variation."

These recipes describe a few of the common ways to make text cut—ups; more free software tools for makin
cut-ups are listed at http://dsl.org/comp/cutups.shtml.

13.6.1 Making Simple Text Cut-Ups Simple text cutups.
13.6.2 Making Random Word Cut=Ups Advanced text cutups.
13.6.3 Making Cut-Ups in Emacs Cutups in Emacs.

13. Analyzing Text 193

http://dsl.org/comp/cutups.shtml

The Linux Cookbook: Tips and Techniques for Everyday Use:
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

13.6.1 Making Simple Text Cut-Ups

@sf{{WWW}: http://dsl.org/compl/tinyutils/

To perform a simple cut-up of a text, use cutup. It takes the name of a file as input and cuts it both
horizontally and vertically along the middle, rearranges the four sections to their diagonally opposite corners
and then writes that cut—up to the standard output. The original file is hot modified.

* To make a cut-up from a file called "nova’, type:

$ cutup nova RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13.6.2 Making Random Word Cut-Ups

@sf{Debian}: *dadadodo’

@sf{{WWW}: http://www.jwz.org/dadadodo/

No simple cut-up filter, Jamie Zawinski's dadadodo uses the computer to go one step beyond--it generate
passages of random text whose structure and characters are similar to the text input you give it. The progral

works better on larger texts, where more subtleties can be analyzed and hence more realistic—looking text is
output.

Give as an argument the name of the text file to be used; by default, dadadodo outputs text to standard

output until you interrupt it by typing C-c.

» To output random text based on the text in the file “nova', type:

$ dadadodo nova RET

This command will output passages of random text based on the text in the file "nova' until it is interrupted
by the user.

You can analyze a text and save the analysis to a file of compiled data; this analysis can then be used to

generate random text when the original input text is not present. The following table describes this and othel
dadadodo options.

OPTION DESCRIPTION

-C Generate integer sentences (default is 0, meaning "generate an infinite amount until

13. Analyzing Text 194

http://dsl.org/comp/tinyutils/
http://www.jwz.org/dadadodo/

The Linux Cookbook: Tips and Techniques for Everyday Use:

integer interrupted”).

- file Load compiled data in file and use it to generate text.

-o file Output compiled data to file file for later use.

-p Pause for integer seconds between paragraphs.

integer

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

13.6.3 Making Cut-Ups in Emacs

The dissociated—press function in Emacs makes random cut-ups of the current buffer in a new buffer
called "*Dissociation*'; the original buffer is not modified. The text in the new buffer is generated by
combining random portions of the buffer by overlapping characters or words, thus (usually) creating
plausible-sounding sentences. It pauses occasionally and asks whether or not you want to continue the
dissociation.

» To generate a Dissociated Press cut—up from the current buffer, type:

M-x dissociated—press RET

Give a positive argument to the dissociated—press function to specify the number of characters to use
for overlap; give a negative argument to specify the number of words for overlap.

» To generate a Dissociated Press cut—-up from the current buffer, always overlapping by three
characters, type:

C-u 3 M-x dissociated—press RET

» To generate a Dissociated Press cut—-up from the current buffer, always overlapping by one word,
type:

C-u -1 M-x dissociated—press RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

13. Analyzing Text 195

14. Formatting Text

Methods and tools for changing the arrangement or presentation of text are often useful for preparing text fc
printing. This chapter discusses ways of changing the spacing of text and setting up pages, of underlining au
sorting and reversing text, and of numbering lines of text.

14.1 Spacing Text Change the spacing in text.
14.2 Paginating Text Paginating text.
14.3 Underlining Text Underlining text.
14.4 Sorting Text Sorting text.
14.5 Numbering Lines of Text Numbering text.
14.6 Reversing Text Reversing text.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

14.1 Spacing Text

These recipes are for changing the spacing of text——the whitespace that exists between words, lines, and
paragraphs.

The filters described in this section send output to standard output by default; to save their output to a file,
use shell redirection (see sectReadirecting Output to a File).

14.1.1 Eliminating Extra Spaces in Text Making the whitespace the same.

14.1.2 Single—Spacing Text Single—spacing text.
14.1.3 Double—=Spacing Text Double-spacing text.
14.1.4 Triple=Spacing Text Triple—spacing text.
14.1.5 Adding Line Breaks to Text Putting line breaks in text.
14.1.6 Adding Margins to Text Putting margins in text.

14.1.7 Swapping Tab and Space Characters Swapping tab and space characters.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

14. Formatting Text 196

The Linux Cookbook: Tips and Techniques for Everyday Use:
14.1.1 Eliminating Extra Spaces in Text

To eliminate extra whitespaces within lines of text, use the fmt filter; to eliminate extra whitespace
between lines of text, use cat.

Use fmt with the "—u' option to output text with "uniform spacing," where the space between words is
reduced to one space character and the space between sentences is reduced to two space characters.

» To output the file ‘term—paper' with uniform spacing, type:

$ fmt —u term-paper RET

Use cat with the "—s' option to "squeeze" multiple adjacent blank lines into one.

 To output the file “term—paper' with multiple blank lines output as only one blank line, type:

$ cat —s term—paper RET

You can combine both of these commands to output text with multiple adjacent lines removed and give it a
unified spacing between words. The following example shows how the output of the combined commands is
sent to less so that it can be perused on the screen.

 To peruse the text file “term-paper' with multiple blank lines removed and giving the text
unified spacing between words, type:

$ cat —s term—paper | fmt —u | less RET

Notice that in this example, both fmt and less worked on their standard input instead of on a file——the
standard output of cat (the contents of “term—paper' with extra blank lines squeezed out) was passed to
the standard input of fmt, and its standard output (the space—squeezed “term—paper', now with uniform
spacing) was sent to the standard input of less, which displayed it on the screen.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

14.1.2 Single—Spacing Text

There are many methods for single—spacing text. To remove all empty lines from text output, use grep with
the regular expression ".', which matches any character, and therefore matches any line that isn't empty (se
sectionRegular Expressions——Matching Text Patterns). You can then redirect this output to a file, or pipe it
to other commands; the original file is not altered.

14. Formatting Text 197

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To output all non—empty lines from the file “term—paper’, type:

$ grep . term-paper RET

This command outputs all lines that are not empty——so lines containing only non—printing characters, such ¢
spaces and tabs, will still be output.

To remove from the output all empty lines, and all lines that consist of only space characters, use "[*

]." as the regexp to search for. But this regexp will still output lines that contain only tab characters; to
remove from the output all empty lines and lines that contain only a combination of tab or space characters,
use [V[:space:]]."' as the regexp to search for. It uses the special predefined "[:space:]' regexp

class, which matches any kind of space character at all, including tabs.

« To output only the lines from the file ‘term—paper' that contain more than just space characters,
type:

$ grep '["].' term—paper RET

To output only the lines from the file ‘term—paper' that contain more than just space or tab
characters, type:

$ grep [[:space:]].' term-paper RET

If a file is already double—spaced, where all even lines are blank, you can remove those lines from the outpt
by using sed with the “n;d' expression.

» To output only the odd lines from file ‘term-paper’, type:

$ sed 'n;d' term—paper RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

14.1.3 Double—-Spacing Text

To double—space text, where one blank line is inserted between each line in the original text, use the pr tool
with the "—d' option. By default, pr paginates text and puts a header at the top of each page with the current
date, time, and page number; give the "—t' option to omit this header.

» To double—space the file ‘term—paper' and write the output to the file
“term—paper.print', type:

14. Formatting Text 198

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ pr —d —t term-paper 62; term—paper.print RET

To send the output directly to the printer for printing, you would pipe the output to Ipr:

$ pr —d —t term—paper | Ipr RET

NOTE: The pr ("print") tool is a text pre—formatter, often used to paginate and otherwise prepare text files
for printing; there is more discussion on the use of this toBagfinating Text.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

14.1.4 Triple-Spacing Text

To triple-space text, where two blank lines are inserted between each line of the original text, use sed with
the “'G;G" expression.

* To triple—space the file ‘term—paper' and write the output to the file ‘term—paper.print’,
type:

$ sed 'G;G' term—paper 62; term—paper.print RET

The "G' expression appends one blank line to each line of sed's output; using ;' you can specify more

than one blank line to append (but you must quote this command, because the semicolon (';') has meaning
to the shell-—sePassing Special Characters to Commands). You can use multiple "G' characters to output
text with more than double or triple spaces.

» To quadruple—-space the file ‘term—paper’, and write the output to the file
“term—paper.print’, type:

$ sed 'G;G;G' term—paper 62; term—paper.print RET

The usage of seds described ifditing Streams of Text.

(<] [>] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

14.1.5 Adding Line Breaks to Text

Sometimes a file will not have line breaks at the end of each line (this commonly happens during file
conversions between operating systems). To add line breaks to a file that does not have them, use the text

14. Formatting Text 199

The Linux Cookbook: Tips and Techniques for Everyday Use:

formatter fmt. It outputs text with lines arranged up to a specified width; if no length is specified, it formats
text up to a width of 75 characters per line.

» To output the file ‘term—paper' with lines up to 75 characters long, type:

$ fmt term—paper RET

Use the "-w' option to specify the maximum line width.

« To output the file ‘term—paper' with lines up to 80 characters long, type:

$ fmt —w 80 term-paper RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

14.1.6 Adding Margins to Text

Giving text an extra left margin is especially good when you want to print a copy and punch holes in it for
use with a three-ring binder.

To output a text file with a larger left margin, use pr with the file name as an argument; give the
“—t' option (to disable headers and footers), and, as an argument to the "—0' option, give the number of

spaces to offset the text. Add the number of spaces to the page width (whose default is 72) and specify this
new width as an argument to the "—w' option.

» To output the file “owners—manual' with a five-space (or five-column) margin to a new file,
“owners—manual.pr', type:

$ pr -t -0 5 —w 77 owners—manual 62; owners—manual.pr RET

This command is almost always used for printing, so the output is usually just piped to Ipr instead of saved
to a file. Many text documents have a width of 80 and not 72 columns; if you are printing such a document
and need to keep the 80 columns across the page, specify a new width of 85. If your printer can only print 8
columns of text, specify a width of 80; the text will be reformatted to 75 columns after the 5—column margin.

* To print the file "owners—manual’ with a 5—column margin and 80 columns of text, type:

$ pr -t -0 5 —w 85 owners—manual | Ipr RET

* To print the file "owners—manual’ with a 5—column margin and 75 columns of text, type:

14. Formatting Text 200

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ pr -t -0 5 —w 80 owners—manual | Ipr RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]
14.1.7 Swapping Tab and Space Characters

Use the expand and unexpand tools to swap tab characters for space characters, and to swap space
characters with tabs, respectively.

Both tools take a file name as an argument and write changes to the standard output; if no files are specifie(
they work on the standard input.

To convert tab characters to spaces, use expand. To convert only the initial or leading tabs on each line,
give the "—i' option; the default action is to convert all tabs.

* To convert all tab characters to spaces in file “list', and write the output to ‘list2', type:

$ expand list 62; list2 RET

» To convert only initial tab characters to spaces in file “list', and write the output to the standard
output, type:

$ expand -i list RET

To convert multiple space characters to tabs, use unexpand. By default, it only converts leading spaces into
tabs, counting eight space characters for each tab. Use the "—a' option to specify that all instances of eight
space characters be converted to tabs.

« To convert every eight leading space characters to tabs in file “list2', and write the output to
“list', type:

$ unexpand list2 62; list RET

 To convert all occurrences of eight space characters to tabs in file “list2', and write the output to
the standard output, type:

$ unexpand -a list2 RET

To specify the number of spaces to convert to a tab, give that number as an argument to the “—t' option.

14. Formatting Text 201

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To convert every leading space character to a tab character in “list2', and write the output to the
standard output, type:

$ unexpand -t 1 list2 RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

14.2 Paginating Text

The formfeed character, ASCII C-| or octal code 014, is the delimiter used to paginate text. When you send
text with a formfeed character to the printer, the current page being printed is ejected and a new page
begins—-thus, you can paginate a text file by inserting formfeed characters at a place where you want a pag
break to occur.

To insert formfeed characters in a text file, use the pr filter.

Give the "—f' option to omit the footer and separate pages of output with the formfeed character, and use

“=h "™ to output a blank header (otherwise, the current date and time, file name, and current page number
are output at the top of each page).

* To paginate the file “listings' and write the output to a file called “listings.page’, type:

$ pr —f —=h "™ listings 62; listings.page RET
By default, pr outputs pages of 66 lines each. You can specify the page length as an argument to the

“~I' option.

» To paginate the file “listings' with 43-line pages, and write the output to a file called
“listings.page’, type:

$ pr —f —-h "™ -1 43 listings 62; listings.page RET

NOTE: If a page has more lines than a printer can fit on a physical sheet of paper, it will automatically break
the text at that line as well as at the places in the text where there are formfeed characters.

You can paginate text in Emacs by manually inserting formfeed characters where you want them—-see
Inserting Special Characters in Emacs.

14.2.1 Placing Headers on Each Page Putting headers on a page.
14.2.2 Placing Text in Columns Putting text in columns.

14. Formatting Text 202

The Linux Cookbook: Tips and Techniques for Everyday Use:

14.2.3 Options Available When Paginating Text More options for pagination.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

14.2.1 Placing Headers on Each Page

The pr tool is a general—-purpose page formatter and print—preparation utility. By default, pr outputs text in

pages of 66 lines each, with headers at the top of each page containing the date and time, file name, and ps¢
number, and footers containing five blank lines.

* To print the file "duchess' with the default pr preparation, type:

$ pr duchess | Ipr RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

14.2.2 Placing Text in Columns

You can also use pr to put text in columns——give the number of columns to output as an argument. Use the
"—t' option to omit the printing of the default headers and footers.

 To print the file "news.update' in four columns with no headers or footers, type:

$ pr -4 —t news.update | Ipr RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

14.2.3 Options Available When Paginating Text

The following table describes some of pr's options; see the prinfo for a complete description of its
capabilities (see sectidgsing the GNU Info System).

OPTION DESCRIPTION

Hfirst:last Specify the first and last page to process; the last page can be omitted, so +7 begins processing
with the seventh page and continues until the end of the file is reached.

14. Formatting Text 203

The Linux Cookbook: Tips and Techniques for Everyday Use:

—column Specify the number of columns to output text in, making all columns fit the page width.
-a Print columns across instead of down.

-C Output control characters in hat notation and print all other unprintable characters in "octal
backslash" notation.

—-d Specify double-spaced output.

—f Separate pages of output with a formfeed character instead of a footer of blank lines (63 lines of
text per 66-line page instead of 53).

-h Specify the header to use instead of the default; specify —h " for a blank header.

header

-l length Specify the page length to be length lines (default 66). If page length is less than 11, headers
and footers are omitted and existing form feeds are ignored.

-m Use when specifying multiple files; this option merges and outputs them in parallel, one per
column.

-0 Set the number of spaces to use in the left margin (default 0).

spaces

—t Omit the header and footer on each page, but retain existing formfeeds.

-T Omit the header and footer on each page, as well as existing formfeeds.

-V Output non—printing characters in "octal backslash" notation.

-w width Specify the page width to use, in characters (default 72).

NOTE: It's also common to use @o change the spacing of text (see sec@pacing Text).

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

14.3 Underlining Text

In the days of typewriters, text that was meant to be set in an italicized font was denoted by underlining the
text with underscore characters; now, it's common practice to denote an italicized word in plain text by typin
an underscore character, *_', just before and after a word in a text file, like *_this_".

Some text markup languages use different methods for denoting italics; for example, in TeX or LaTeX files,
italicized text is often denoted with brackets and the “\it' command, like *{\it this}. (LaTeX files

use the same format, but \emph' is often used in place of "\it".)

You can convert one form to the other by using the Emacs replace—-regular—expression function

and specifying the text to be replaced as a regexp (see deetiotar Expressions——Matching Text
Patterns).

* To replace plaintext-style italics with TeX "\it' commands, type:

M-x replace-regular—expression RET

14. Formatting Text 204

The Linux Cookbook: Tips and Techniques for Everyday Use:

\(®_J*)_RET
\(\it \1} RET

» To replace TeX-style italics with plaintext _underscores_, type:

M-x replace-regular—expression RET
Wit \(\([(MNH+)\ RET
\1_RET

Both examples above used the special regexp symbol "\1', which matches the same text matched by the
first \(... \)' construct in the previous regexp. See Info file 'emacs—e20.info', node "Regexps' for

more information on regexp syntax in Emacs.

To put a literal underline under text, you need to use a text editor to insert a C—h character followed by an
underscore ("_") immediately after each character you want to underline; you can insert the C-h in Emacs
with the C—qgfunction (see sectioimserting Special Characters in Emacs).

When a text file contains these literal underlines, use the ul tool to output the file so that it is viewable by the
terminal you are using; this is also useful for printing (pipe the output of ul to lpr).

« To output the file ‘term—paper' so that you can view underbars, type:

$ ul term—paper RET

To output such text without the backspace character, C-h, in the output, use col with the "—u' option.

 To output the file “term—paper' with all backspace characters stripped out, type:

$ col —u term-paper RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

14.4 Sorting Text
You can sort a list in a text file with sort. By default, it outputs text in ascending alphabetical order; use the
“—r' option to reverse the sort and output text in descending alphabetical order.

For example, suppose a file "provinces' contains the following:

Shantung
Honan
Szechwan

14. Formatting Text 205

The Linux Cookbook: Tips and Techniques for Everyday Use:

Hunan
Kiangsu
Kwangtung
Fukien

 To sort the file “provinces' and output all lines in ascending order, type:

$ sort provinces RET
Fukien

Honan

Hunan

Kiangsu

Kwangtung
Shantung

Szechwan

$

* To sort the file "provinces' and output all lines in descending order, type:

$ sort -r provinces RET
Szechwan

Shantung

Kwangtung

Kiangsu

Hunan

Honan

Fukien

$

The following table describes some of sort's options.

OPTION DESCRIPTION

-b Ignore leading blanks on each line when sorting.

—-d Sort in "phone directory” order, with only letters, digits, and blanks being sorted.

—f When sorting, fold lowercase letters into their uppercase equivalent, so that differences in case art
ignored.

=i Ignore all spaces and all non-typewriter characters when sorting.
-n Sort numerically instead of by character value.
—-o file Write output to file instead of standard output.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

14. Formatting Text 206

The Linux Cookbook: Tips and Techniques for Everyday Use:

14.5 Numbering Lines of Text

There are several ways to number lines of text.

One way to do it is to use the nl ("number lines") tool. Its default action is to write its input (either the file
names given as an argument, or the standard input) to the standard output, with an indentation and all
non-empty lines preceded with line numbers.

» To peruse the file “report’ with each line of the file preceded by line numbers, type:

$ nlreport | less RET

You can set the numbering style with the "—b' option followed by an argument. The following table lists the
possible arguments and describes the numbering style they select.

ARGUMENT NUMBERING STYLE

a Number all lines.

t Number only non-blank lines. This is the default.

n Do not number lines.

pregexp Only number lines that contain the regular expression redegp section Reqular

Expressions——Matching Text Patterns).

The default is for line numbers to start with one, and increment by one. Set the initial line number by giving
an argument to the “—Vv' option, and set the increment by giving an argument to the "—i' option.

» To output the file “report’ with each line of the file preceded by line numbers, starting with the
number two and counting by fours, type:

$nl-v2-i4report RET

» To number only the lines of the file "cantos' that begin with a period ("."), starting numbering
at zero and using a numbering increment of five, and to write the output to "cantos.numbered’,
type:

$nl-i5-v0-bp"\' cantos 62; cantos.numbered RET

The other way to number lines is to use cat with one of the following two options: the "—n' option
numbers each line of its input text, while the "—b' option only numbers non-blank lines.

 To peruse the text file “report’ with each line of the file numbered, type:

14. Formatting Text 207

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ cat —n report | less RET

» To peruse the text file “report’ with each non-blank line of the file numbered, type:

$ cat —b report | less RET

In the preceding examples, output from cat is piped to less for perusal; the original file is not altered.

To take an input file, number its lines, and then write the line—numbered version to a new file, send the
standard output of the cat command to the new file to write.

» To write a line—numbered version of file “report' to file ‘report.lines’, type:

$ cat —n report 62; report.lines RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

14.6 Reversing Text

The tac command is similar to cat, but it outputs text in reverse order. There is another
difference——-tac works on records, sections of text with separator strings, instead of lines of text. Its
default separator string is the linebreak character, so by default tac outputs files in line—for-line reverse
order.

» To output the file “prizes' in line—for-line reverse order, type:

$ tac prizes RET

Specify a different separator with the "—s' option. This is often useful when specifying non—printing
characters such as formfeeds. To specify such a character, use the ANSI-C method of quoting (see section

Passing Special Characters to Commands).

« To output “prizes' in page—for—-page reverse order, type:

$ tac —s $\f' prizes RET

The preceding example uses the formfeed, or page break, character as the delimiter, and so it outputs the fi
“prizes' in page—for-page reverse order, with the last page output first.

Use the "—r' option to use a regular expression for the separator string (see section Regular
Expressions——Matching Text Patterns). You can build regular expressions to output text in word—for-word

14. Formatting Text 208

The Linux Cookbook: Tips and Techniques for Everyday Use:

and character—for—character reverse order:
» To output “prizes' in word—for-word reverse order, type:
$ tac —r -s '["a-zA-z0-9\-] prizes RET
» To output “prizes' in character—for—character reverse order, type:
$tac -r -s'\| RET

' prizes RET

To reverse the characters on each line, use rev.

» To output “prizes' with the characters on each line reversed, type:

$ rev prizes RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

14. Formatting Text 209

15. Searching Text

It's quite common to search through text for a given sequence of characters (such as a word or phrase), call
a string, or even for a pattern describing a set of such strings; this chapter contains recipes for doing these
kind of things.

15.1 Searching for a Word or Phrase Finding a word or phrase.
15.2 Reqgular Expressions——Matching Text Patterns How to specify and find patterns.
15.3 Searching More than Plain Text Files Searching in other than text files.
15.4 Qutputting the Context of a Search Searching in a certain context.
15.5 Searching and Replacing Text Searching and replacing text.
15.6 Searching Text in Emacs Searching in Emacs.
15.7 Searching Text in Less Searching in less.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.1 Searching for a Word or Phrase

The primary command used for searching through text is the rather froglike—sounding tool called grep (the
origin of its name is explained Regular Expressions——Matching Text Patterns, where its advanced usage is
discussed). It outputs lines of its input that contain a given string or pattern.

To search for a word, give that word as the first argument. By default, grep searches standard input; give th
name of a file to search as the second argument.

* To output lines in the file “catalog' containing the word "CD', type:

$ grep CD catalog RET

To search for a phrase, specify it in quotes.

» To output lines in the file “catalog' containing the word “Compact Disc', type:

$ grep 'Compact Disc' catalog RET

The preceding example outputs all lines in the file "catalog' that contain the exact string "Compact
Disc'; it will not match, however, lines containing "compact disc' or any other variation on the case

15. Searching Text 210

The Linux Cookbook: Tips and Techniques for Everyday Use:

of letters in the search pattern. Use the "—i' option to specify that matches are to be made regardless of case

» To output lines in the file “catalog' containing the string “‘compact disc' regardless of the
case of its letters, type:

$ grep —i 'compact disc' catalog RET

This command outputs lines in the file "catalog' containing any variation of the pattern ‘compact
disc', including "Compact Disc', COMPACT DISC', and ‘comPact dIsC"'.

One thing to keep in mind is that grep only matches patterns that appear on a single line, so in the precedin
example, if one line in "catalog’ ends with the word "‘compact' and the next begins with "disc’,

grep will not match either line. There is a way around this with grgpee sectioiinding Phrases
Regardless of Spacipgr you can search the text in Emacs (see seStanching for a Phrase in Emacs).

You can specify more than one file to search. When you specify multiple files, each match that grep outputs
is preceded by the name of the file it's in (and you can suppress this with the "—h' option.)

» To output lines in all of the files in the current directory containing the word "CD’, type:

$ grep CD * RET

 To output lines in all of the ".txt' files in the "~/doc’ directory containing the word "CD',
suppressing the listing of file names in the output, type:

$ grep —h CD ~/doc/*.txt RET

Use the "—r' option to search a given directory recursively, searching all subdirectories it contains.

» To output lines containing the word "CD' in all of the ".txt' files in the "~/doc' directory and
in all of its subdirectories, type:

$ grep —r CD ~/doc/*.txt RET

NOTE: There are more complex things you can search for than simple strings, as will be explained in the
next section.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15. Searching Text 211

The Linux Cookbook: Tips and Techniques for Everyday Use:

15.2 Regular Expressions——Matching Text Patterns

In addition to word and phrase searches, you can use grep to search for complex text patterns called regula
expressions. A regular expression——or "regexp"——-is a text string of special characters that specifies a set «
patterns to match.

Technically speaking, the word or phrase patterns described in the previous section are regular
expressions——just very simple ones. In a regular expression, most characters——including letters and
numbers—-represent themselves. For example, the regexp pattern 1 matches the string "1', and the pattern
bee matches the string "bee'.

There are a number of reserved characters called metacharacters that don't represent themselves in a regu
expression, but have a special meaning that is used to build complex patterns. These metacharacters are a
follows: ., *, [,], *, $, and \.

To specify one of these literal characters in a regular expression, precede the character with a "\'.

» To output lines in the file “catalog' that contain a “$' character, type:

$ grep \$' catalog RET

» To output lines in the file “catalog' that contain the string "$1.99', type:

$ grep '\$1\.99' catalog RET

 To output lines in the file "catalog' that contain a "\' character, type:

$ grep \\' catalog RET

The following table describes the special meanings of the metacharacters and gives examples of their usag

METACHARACTER MEANING

Matches any one character, with the exception of the newline
character. For example, . matches "a’, '1', '?', "." (a literal
period character), and so forth.

* Matches the preceding regexp zero or more times. For example,
-* matches -, —', ——', ———————— ' and so forth.
Now imagine a line of text W|th a million "-' characters somewhere
in it, all marching off across the horizon, up into the blue sky, and
through the clouds. A million "=' characters in a row. This pattern
would match it. Now think of the same long parade, but it's a million

and one "' characters——it matches that, too.

[Encloses a character set, and matches any member of the set——for
example, [abc] matches either "a’, "b’, or “¢'. In addition, the

15. Searching Text 212

The Linux Cookbook: Tips and Techniques for Everyday Use:

hyphen ("-") and caret (') characters have special meanings
when used inside brackets:

- The hyphen specifies a range of characters, ordered according to
their ASCII value (see sectidfiewing a Character Chart). For
example, [0-9] is synonymous with [0123456789];
[A-Za-z] matches one uppercase or lowercase letter. To include a
literal "' in a list, specify it as the last character in a list: so
[0-9-] matches either a single digit character or a "—'.x

A As the first character of a list, the caret means that any character
except those in the list should be matched. For example,
[*a] matches any character except "a', and [*"0—-9] matches any
character except a numeric digit.

A Matches the beginning of the line. So ~a matches "a' only when it
is the first character on a line.

$ Matches the end of the line. So a$ matches "a’ only when it is the
last character on a line.

\ Use \ before a metacharacter when you want to specify that literal
character. So \$ matches a dollar sign character ('$'), and
\\ matches a single backslash character ('\').

In addition, use \ to build new

\| Called the "alternation operator'; it
\+ Matches the preceding regexp as many times as
\? Matches the regexp preceding it either zero or

\{number\} Matches the previous regexp
\(regexp\) Group regexp together for

NOTE: The name “grep' derives from a command in the now—-obsolete Unix ed line editor tool--the

ed command for searching globally through a file for a regular expression and then printing those lines was
g/re/p, where re was the regular expression you'd use. Eventually, the grep command was written to do
this search on a file when not using.&P)

The following sections describe some regexp recipes for commonly searched—for patterns.

15.2.1 Matching Lines Beginning with Certain Matching text at the beginning of a

Text line.

15.2.2 Matching Lines Ending with Certain Text Matching text at the end of a line.
15.2.3 Matching Lines of a Certain Length Matching a line as a pattern.

15.2.4 Matching Lines That Contain Any of Matching lines containing any of
Some Regexps some regexps.

15.2.5 Matching Lines That Contain All of Some Matching lines containing all of some
Regexps regexps.

15.2.6 Matching Lines That Don't Contain a Finding lines that don't match.
Regexp

15.2.7 Matching Lines That Only Contain Matching lines of a certain length.

15. Searching Text 213

The Linux Cookbook: Tips and Techniques for Everyday Use:

Certain Characters

15.2.8 Finding Phrases Regardless of Spacing Matching phrases regardless of
spacing.

15.2.9 Finding Patterns in Certain Contexts Matching patterns within a context.
15.2.10 Using a List of Regexps to Match From Matching a list of patterns.

15.2.11 Regexps for Common Situations Table of sample regular expressions.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.2.1 Matching Lines Beginning with Certain Text
Use "M in a regexp to denote the beginning of a line.

* To output all lines in “/usr/dict/words' beginning with “pre’, type:

$ grep "pre' /usr/dict/words RET

» To output all lines in the file "book' that begin with the text “in the beginning', regardless
of case, type:

$ grep —i "Min the beginning' book RET

NOTE: These regexps were quoted with ' characters; this is because some shells otherwise treat the
"N character as a special "metacharacter” (see sétigging Special Characters to Comma(Ri3)

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.2.2 Matching Lines Ending with Certain Text
Use '$' as the last character of quoted text to match that text only at the end of a line.

 To output lines in the file “sayings' ending with an exclamation point, type:

$ grep '!$' sayings RET

NOTE: To use '$' in a regexp to find words that rhyme with a given word Lsging Words that Match a
Pattern.

15. Searching Text 214

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.2.3 Matching Lines of a Certain Length

To match lines of a particular length, use that number of ".' characters between "' and “$'-——for
example, to match all lines that are two characters (or columns) wide, use "*..$' as the regexp to search
for.

» To output all lines in “/usr/dict/words' that are exactly two characters wide, type:

$ grep "*..$' Jusr/dict/words RET

For longer lines, it is more useful to use a different construct: “*.\{numben\}$', where number is the
number of lines to match. Use °," to specify a range of numbers.

* To output all lines in “/usr/dict/words' that are exactly seventeen characters wide, type:

$ grep " \{17\}$' /usr/dict/words RET

» To output all lines in “/usr/dict/words' that are twenty—five or more characters wide, type:

$ grep ""\{25\}$' /usr/dict/words RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.2.4 Matching Lines That Contain Any of Some Regexps

To match lines that contain any of a number of regexps, specify each of the regexps to search for between
alternation operators ('\|') as the regexp to search for. Lines containing any of the given regexps will be
output.

» To output all lines in “playlist' that contain either the patterns “the sea' or "cake', type:

$ grep 'the sea\|cake' playlist RET

This command outputs any lines in “playlist' that match the patterns “the sea' or “cake’,
including lines matching both patterns.

15. Searching Text 215

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.2.5 Matching Lines That Contain All of Some Regexps

To output lines that match all of a number of regexps, use grep to output lines containing the first regexp
you want to match, and pipe the output to a grep with the second regexp as an argument. Continue adding
pipes to grep searches for all the regexps you want to search for.

« To output all lines in “playlist' that contain both patterns “the sea' and “cake’, regardless
of case, type:

$ grep —i 'the sea' playlist | grep —i cake RET

NOTE: To match lines containing some regexps in a particular ordeResgxps for Common Situations.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.2.6 Matching Lines That Don't Contain a Regexp

To output all lines in a text that don't contain a given pattern, use grep with the "-v' option—-this option
reverts the sense of matching, selecting all non—-matching lines.

» To output all lines in “/usr/dict/words' that are not three characters wide, type:

$grep-v'N..$' RET

« To output all lines in "access_log' that do not contain the string “http', type:

$ grep -v http access_log RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.2.7 Matching Lines That Only Contain Certain Characters

To match lines that only contain certain characters, use the regexp ""[characters]*$', where
characters are the ones to match.

15. Searching Text 216

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To output lines in “/usr/dict/words' that only contain vowels, type:

$ grep —i "Maeiou]*$' /usr/dict/words RET

The "—i' option matches characters regardless of case; so, in this example, all vowel characters are matchec
regardless of case.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.2.8 Finding Phrases Regardless of Spacing

One way to search for a phrase that might occur with extra spaces between words, or across a line or page
break, is to remove all linefeeds and extra spaces from the input, and then grep that.
To do this, pipe the inp(#4) to tr with "\r\n:\>\|-" as an argument to the "-d' option (removing

all linebreaks from the input); pipe that to the fmt filter with the "—u' option (outputting the text with
uniform spacing); and pipe that to grep with the pattern to search for.

* To search across line breaks for the string "at the same time as' in the file "notes', type:

$ cat notes | tr —d "\\n:\62;\|-" | fmt —u | grep 'at the same time
as' RET

NOTE: The Emacs editor has its own special search for doing thisSesgehing for a Phrase in Emacs.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.2.9 Finding Patterns in Certain Contexts

To search for a pattern that only occurs in a particular context, grep for the context in which it should occur,
and pipe the output to another grep to search for the actual pattern.

For example, this can be useful to search for a given pattern only when it is quoted with an “>' character in
an email message.

« To list lines from the file “'email-archive' that contain the word “narrative' only when it
is quoted, type:

$ grep *62;' email-archive | grep narrative RET

15. Searching Text 217

The Linux Cookbook: Tips and Techniques for Everyday Use:

You can also reverse the order and use the "—Vv' option to output all lines containing a given pattern that are
not in a given context.

* To list lines from the file "'email—archive' that contain the word “narrative', but not when
it is quoted, type:

$ grep narrative email-archive | grep -v *62;' RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.2.10 Using a List of Regexps to Match From

You can keep a list of regexps in a file, and use grep to search text for any of the patterns in the file. To do
this, specify the name of the file containing the regexps to search for as an argument to the "—f' option.

This can be useful, for example, if you need to search a given text for a number of words——keep each word
on its own line in the regexp file.

 To output all lines in “/usr/dict/words' containing any of the words listed in the file
“forbidden-words', type:

$ grep —f forbidden-words /usr/dict/words RET

» To output all lines in “/usr/dict/words' that do not contain any of the words listed in
“forbidden—words', regardless of case, type:

$ grep —v —i —f forbidden—words /usr/dict/words RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.2.11 Regexps for Common Situations

The following table lists sample regexps and describes what they match. You can use these regexps as

boilerplate when building your own regular expressions for searching text. Remember to enclose regexps in
quotes.

TO MATCH LINES THAT ... USE THIS REGEXP
contain nine zeroes in a row 0\{9\}

15. Searching Text 218

The Linux Cookbook: Tips and Techniques for Everyday Use:

are exactly four characters long Ao \{4\}$

are exactly seventy characters long A\{70\}$

begin with an asterisk character A*

begin with “tow' and end with “ing' tow.*ing$

contain a number [0-9]

do not contain a number ANO-9]*$

contain a year from 1991 through 1995 199[1-5]

contain a year from 1957 through 1969 \(195[7-9]\\|\(196[0-9]\)
contain either ".txt' or ".text' \.te\?xt

contain “cat' then “gory' in the same word cat\.\+gory

contain “cat' then “gory' in the same line cat\.\+\?gory

contain a "q' not followed by a "u' q[*u]

contain any ftp, gopher, or “http' URLs \(ftp\|gopher\|http\|\)://.*\..*
contain "N', "T', and "K', with zero or more characters N.*T.*K

between each

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.3 Searching More than Plain Text Files
The following recipes are for searching data other than in plain text files.

15.3.1 Matching Lines in Compressed Files Matching lines in compressed files.

15.3.2 Matching Lines in Web Pages Matching lines in Web pages.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.3.1 Matching Lines in Compressed Files

Use zgrep to search through text in files that are compressed. These files usually have a ".gz' file name
extension, and can't be searched or otherwise read by other tools without uncompressing the file first (for
more about compressed files, see secliompressed Files).

The zgrep tool works just like grep, except it searches through the text of compressed files. It outputs

matches to the given pattern as if you'd searched through normal, uncompressed files. It leaves the files
compressed when it exits.

15. Searching Text 219

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To search through the compressed file 'README.gz' for the text "Linux', type:

$ zgrep Linux README.gz RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.3.2 Matching Lines in Web Pages

You can grep a Web page or other URL by giving the URL to lynx with the "—~dump' option, and piping
the output to grep.

* To search the contents of the URL http://example.com/ for lines containing the text ‘gonzo' or
“hunter', type:

$ lynx —dump http://example.com/ | grep 'gonzo\|lhunter' RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.4 Outputting the Context of a Search

It is sometimes useful to see a matched line in its context in the file——that is, to see some of the lines that
surround it.

Use the "—C' option with grep to output results in context——-it outputs matched lines with two lines of
"context" both before and after each match. To specify the number of context lines output both before and
after matched lines, use that number as an option instead of "-C'.

» To search “/usr/dict/words' for lines matching “tsch' and output two lines of context
before and after each line of output, type:

$ grep —C tsch /usr/dict/words RET

* To search “/usr/dict/words' for lines matching “tsch' and output six lines of context
before and after each line of output, type:

$ grep —6 tsch /usr/dict/words RET

To output matches and the lines before them, use "—B'; to output matches and the lines after them, use

15. Searching Text 220

http://example.com/

The Linux Cookbook: Tips and Techniques for Everyday Use:

"—A'. Give a numeric option with either of these options to specify that number of context lines.

» To search “/usr/dict/words' for lines matching “tsch' and output two lines of context
before each line of output, type:

$ grep —B tsch /usr/dict/words RET

* To search “/usr/dict/words' for lines matching “tsch' and output six lines of context
after each line of output, type:

$ grep —A6 tsch /usr/dict/words RET

* To search “/usr/dict/words' for lines matching “tsch' and output ten lines of context
before and three lines of context after each line of output, type:

$ grep —B10 —-A3 tsch /usr/dict/words RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.5 Searching and Replacing Text

A quick way to search and replace some text in a file is to use the following one-line perl command:

$ perl —pi —e "s/oldstring/newstring/g;" filespec RET

In this example, oldstring is the string to search, newstring is the string to replace it with, and filespec is the
name of the file or files to work on. You can use this for more than one file.

* To replace the string "helpless' with the string “helpful' in all files in the current directory,
type:

$ perl —pi —e "s/helpless/helpful/g;" * RET

You can also search and replace text in an Emacs buffer; to do this, use the replace-regexp function and
give both the expression to search for and the expression to replace it with.

» To replace the text “helpless' with the text “helpful' in the current buffer, type:

15. Searching Text 221

The Linux Cookbook: Tips and Techniques for Everyday Use:

M-x replace-regexp RET helpless RET helpful RET

NOTE: You can also search and replace text in most text editors, including Ema8sase®ng and
Replacing in Emacs.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.6 Searching Text in Emacs

The following sections show ways of searching for text in Emacs——incrementally, for a word or phrase, or
for a pattern——and for searching and then replacing text.

15.6.1 Searching Incrementally in Emacs Searching incrementally.
15.6.2 Searching for a Phrase in Emacs Searching for a word or phrase.

15.6.3 Searching for a Regexp in Emacs Searching for a pattern.
15.6.4 Searching and Replacing in Emacs Replacing text in Emacs.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.6.1 Searching Incrementally in Emacs

Type C-s to use the Emacs incremental search function. It takes text as input in the minibuffer and it
searches for that text from point toward the end of the current buffer. Type C-s again to search for the next
occurrence of the text you're searching for; this works until no more matches occur. Then, Emacs reports
“Failing I-search' in the minibuffer; type C-s again to wrap to the beginning of the buffer and

continue the search from there.

It gets its name "incremental” because it begins searching immediately when you start to type text, and so it
builds a search string in increments———for example, if you want to search for the word “sunflower" in
the current buffer, you start to type

C-ss

At that point Emacs searches forward through the buffer to the first °s' character, and highlights it. Then, as
you type u, it searches forward to the first “su' in the buffer and highlights that (if a "u' appears

immediately after the “s' it first stopped at, it stays where it's at, and highlights the "s' and the “u). It
continues to do this as long as you type and as long as there is a match in the current buffer. As soon as wt
you type does not appear in the buffer, Emacs beeps and a message appears in the minibuffer stating that t
search has failed.

15. Searching Text 222

The Linux Cookbook: Tips and Techniques for Everyday Use:

To search for the next instance of the last string you gave, type C-s again; if you keep CTRL held down,
every time you press the S key, Emacs will advance to the next match in the buffer.

This is generally the fastest and most common type of search you will use in Emacs.

You can do an incremental search through the buffer in reverse——-that is, from point to the beginning of the
buffer——with the isearch—backward function, C-r.

» To search for the text ‘'moon' in the current buffer from point in reverse to the beginning of the
buffer, type:

C-r moon
|

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.6.2 Searching for a Phrase in Emacs

Like grep, the Emacs incremental search only works on lines of text, so it only finds phrases on a single
line. If you search for "hello, world' with the incremental search and the text “hello," appears at
the end of a line and the text ‘world' appears at the beginning of the next line, it won't find it.

To find a multi-word phrase across line breaks, use the word—search—forward function. It searches for
a phrase or words regardless of punctuation or spacing.

* To search forward through the current buffer for the phrase “join me', type:

M-x word-search-forward RET join me RET

NOTE: The word-search—backward function does the same as word-search—forward, except it
searches backward through the buffer, from point to the beginning of the buffer.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15.6.3 Searching for a Regexp in Emacs

Use the search—forward-regexp function to search for a regular expression from point to the end of
the current buffer.

» To search forward through the current buffer for the regexp "@.*\.org', type:

15. Searching Text 223

The Linux Cookbook: Tips and Techniques for Everyday Use:
M-x search—forward-regexp RET @.*\.org RET

The keyboard accelerator for this command is M—C-s——-on most keyboards, you press and release ESC a
then hold down CTRL while you type s. To repeat the last regexp search you made, type M—-C-s C-s; then,
as long as you have CTRL held down, you can keep typing s to advance to the next match, just as you woul
with an incremental search.

NOTE: There is a search—backward-regexp function that is identical but searches backward, from
point to the top of the buffer.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.6.4 Searching and Replacing in Emacs

To search for and replace text in Emacs, use the replace-regexp function. When you run this function,
Emacs will ask for both the text or regexp to search for and the text to replace it with.

* To replace the text “day' with the text “night' in the current buffer, type:

M-x replace-regexp RET day RET night RET

This function is especially useful for replacing control characters with text, or for replacing text with control
characters, which you can specify with C—q, the quoted-insert function (see sectiomserting Special
Characters in Emacs).

» To replace all the "M’ characters in the current buffer with regular linefeeds, type:

M-x replace-regexp RET C-q C-m RET C-q 012 RET RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

15.7 Searching Text in Less

There are two useful commands in less for searching through text: / and ?. To search forward through the
text, type / followed by a regexp to search for; to search backward through the text, use ?.

When you do a search, the word or other regexp you search for appears highlighted throughout the text.

15. Searching Text 224

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To search forward through the text you are perusing for the word “cat', type:

/cat RET

To search backward through the text you are perusing for the regexp “[ch]at’, type:

?[chjat RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

15. Searching Text 225

16. Typesetting and Word Processing

If you're coming to Linux with a Microsoft Windows or Apple MacOS background, or from some other
non-Unix computing environment, you are likely used to one approach to "word processing." In these
environments, most writing is done in word processors—-large programs that offer a vast array of formatting
options and that store their output in proprietary file formats. Most people use word processors no matter
where the intended output will go (even if it's just your diary).

Word processors, from complete suites like StarOffice to commercial favorites like WordPerfect, are
available for Linux——and have been for years. However, the standard personal-computing paradigm known
as "word processing" has never really taken off on Linux——or, for that matter, on Unix-like operating
systems in general. With Linux, most writing is done in a text editor, and files are kept in plain text.

When you keep a file in plain text, you can use command-line tools to format the pages and paragraphs; ac
page numbers and headers; check the spelling, style, and usage; count the lines, words, and characters it
contains; convert it to HTML and other formats; and even print the text in a font of your choosing—-all of
which are described in the recipes in this book. The text can be formatted, analyzed, cut, chopped, sliced,
diced, and otherwise processed by the vast array of Linux command-line tools that work on text——over 750
in an average installation.

This approach may seem primitive at first——especially to those weaned in a computing environment that
dictates that all writing must be set in a typeface from the moment of creation——but the word-processing
approach can be excessive compared to what Linux provides. You can, if you like, view or print plain text in
a font, with a single command--which is what ninety percent of people want to do with a word processor
ninety percent of the time, anyway; to do this, Geaverting Plain Text for Output.

It's my opinion that word processing is not a forward-thinking direction for the handling of text, especially
on Linux systems and especially now that text is not always destined for printed output: text can end up on ¢
Web page, in an "eBooK25) in an email message, or possibly in print. The best common source for these
formats is plain text. Word processing programs, and the special file formats they require, are anathema to t
generalized, tools—based and plain—text philosophy of Unix and Linux (see déaboand the Tools

Philosophy). "Word processing" itself may be an obsolete idea of the 1980s personal computing environmer
and it may no longer be a necessity in the age of the Web and email-—-mediums in which plain text content i
more native than proprietary word processor formats.

If you do need to design a special layout for hardcopy, you can typeset the text. One could write a book on
the subject of Linux typesetting; unfortunately, no such book has yet been written, but this chapter contains
recipes for producing typeset text. They were selected as being the easiest to prepare or most effective for
their purpose.

NOTE: For more information on this subject, | recommend Christopher B. Browne's excellent overview,
"Word Processors for Linux".

16.1 Choosing the Right Typesetting System for ~ Choosing the typesetting system to

the Jaob use.
16.2 Converting Plain Text for Output Converting plain text to PostScript.
16.3 LyX Document Processing LyX, a document processor.

16. Typesetting and Word Processing 226

http://www.cbbrowne.com/info/wp.html
http://www.cbbrowne.com/info/wp.html
http://www.cbbrowne.com/info/wp.html
http://www.cbbrowne.com/info/wp.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

16.4 Typesetting with TeX and Friends TeX and friends.
16.5 Writing Documents with SGMLtools SGML and markup language.
16.6 Other Word Processors and Typesetting Other typesetting systems.
Systems

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.1 Choosing the Right Typesetting System for the Job

Choosing the proper typesetting system to use when you are about to begin a project can be daunting: eact
has its own drawbacks and abilities, and to the less experienced it may not be immediately clear which is
most appropriate for a particular document or project.

The following table can help you determine which system is best for a particular task. There isn't one way of
doing such things, of course——these are only my recommendations. The first column lists the kind of output
you intend, the second gives examples of the kind of documents, and the third suggests the typesetting
system(s) to use. These systems are described in the remaining sections of this chapter.

INTENDED OUTPUT EXAMPLES TYPESETTING
SYSTEM
Printed, typeset output and electronic Internet FAQ, white paper, dissertation enscript; Texinfo;
HTML or text file SGMLtools
Printed, typeset output and text file man page, command reference card groff
Printed, typeset output Letter or other correspondence, report,LaTeX or LyX
book manuscript
Printed, typeset output Brochure or newsletter with multiple LyX
columns and images
Printed, typeset output Envelope, mailing label, other TeX
specialized document
Printed text output in a font Grocery list, saved email message, to—dascript
list
Printed, typeset output Poster, sign enscript; HTML;
LyX; TeX
Large printed text output Long banners for parties or other banner
occasions

NOTE: If you really don't need a document to be typeset, then don't bother! Just keep it a plain text file, and
use a text editor to edit it (see sectimxt Editing). Do this for writing notes, email messages, Web pages,
Usenet articles, and so forth. If you ever do need to typeset it later, you will still be able to do so. And you
can, if you like, view or print plain text in nice fonts (see sedDaitputting Text in a Fant).

16. Typesetting and Word Processing 227

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.2 Converting Plain Text for Output

@sf{Debian}: “enscript'

@sf{WWW}: http://www.iki.fi/~mtr/genscript/

The simplest way to typeset plain text is to convert it to PostScript. This is often done to prepare text for
printing; the original source text file remains as unformatted text, but the text of the printed output is
formatted in basic ways, such as being set in a font.

The main tool for converting text to PostScript is called enscript; it converts the text file that is specified

as an argument into PostScript, making any number of formatting changes in between. It's great for quickly
making nice output from a plain text file——you can use it to do things such as output text in a font of your
choosing, or paginate text with graphical headers at the top of each page.

By default, enscript paginates its input, outputs it in a 10—point Courier font, and puts a simple header at
the top of each page containing the file name, date and time, and page number in bold. Use the "-B' option
to omit this header.

If you have a PostScript printer connected to your system, enscript can be set up to spool its output right
to the printer. You can verify if your system is set up this way by looking at the enscript configuration
file, ‘/etc/enscript.cfg’. The line

DefaultOutputMethod: printer

specifies that output is spooled directly to the printer; changing it to “stdout' instead of
“printer' sends the output to the standard output instead.

Even if your default printer does not natively understand PostScript, it may be able to take

enscript output, anyway. Most Linux installations these days have print filters set up so that PostScript
spooled for printing is automatically converted to a format the printer understands (if your system doesn't
have this setup for some reason, convert the PostScript to a format recognized by your printer with the
gs tool, and then print that-—sé&®»nverting PostScript).

» To convert the text file “saved—-mail' to PostScript, with default formatting, and spool the output
right to the printer, type:

$ enscript saved—-mail RET

To write the output to a file instead of spooling it, give the name of the file you want to output as an argumer
to the “—p' option. This is useful when you don't have a PostScript printer and you need to convert the
output first, or for when you just want to make a PostScript image file from some text, or for previewing the
output before you print it. In the latter case, you can view it on the display screen with a PostScript viewer
application such as ghostview (see sectioRreviewing a PostScript File).

16. Typesetting and Word Processing 228

http://www.iki.fi/~mtr/genscript/

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To write the text file “'saved—mail' to a PostScript file, 'saved—-mail.ps', and then preview
itin X, type:

$ enscript —p report.ps saved—-mail RET
$ ghostview saved-mail.ps RET

The following recipes show how to use enscript to output text with different effects and properties.

NOTE: Once you make a PostScript file from text input, you can use any of the tools to format this new
PostScript file, including rearranging and resizing its pages (see section PostScript).

16.2.1 Outputting Text in a Font Outputting text in a font.

16.2.2 Outputting Text as a Poster or Sign Outputting text as posters or signs.
16.2.3 Outputting Text with Language Highlighting text based on syntax.
Highlighting

16.2.4 Outputting Text with Fancy Headers Making fancy headers.

16.2.5 Outputting Text in Landscape Outputting text in landscape
Orientation orientation.

16.2.6 Outputting Multiple Copies of Text Outputting multiple copies of text.

16.2.7 Selecting the Pages of Text to Output Selecting which pages of text to output.

16.2.8 Additional PostScript Output Options More ways to output PostScript from
text.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.2.1 Outputting Text in a Font

To output text in a particular PostScript font, use enscript and give the name of the font you want to use
as a quoted argument to the "—f' option.

Specify both the font family and size in points: give the capitalized name of the font family (with hyphens to
indicate spaces between words) followed by the the size in points. For example, "Courierl4' outputs text
in the Courier font at 14 points, and "Times—Roman12.2' outputs text in the Times Roman font at 12.2
points. Some of the available font names are listed in the file

“lusr/share/enscript/afm/font.map'; the enscriptman page describes how to use additional

fonts that might be installed on your system.

* To print the contents of the text file 'saved—mail' on a PostScript printer, with text set in the
Helvetica font at 12 points, type:

16. Typesetting and Word Processing 229

The Linux Cookbook: Tips and Techniques for Everyday Use:

$ enscript —B —f "Helvetical2" saved-mail RET

» To make a PostScript file called “saved—mail.ps' containing the contents of the text file
“saved-mail', with text set in the Helvetica font at 12 points, type:

$ enscript —B —f "Helvetical2" —p saved-mail.ps saved-mail RET

The "-B' option was used in the preceding examples to omit the output of a header on each page. When
headers are used, they're normally output in 10—point Courier Bold; to specify a different font for the text in
the header, give its name as an argument to the "—F' option.

* To print the contents of the text file 'saved—mail' to a PostScript printer, with text set in
10-point Times Roman and header text set in 18—point Times Bold, type:

$ enscript —f "Times—-Roman10" —-F "Times—Bold18" saved-mail RET

» To make a PostScript file called "saved—mail.ps' containing the contents of the text file
“saved—-mail', with text and headers both set in 16—point Palatino Roman, type:

$ enscript —f "Palatino-Roman16" —F "Palatino—Roman16" —p
saved—-mail.ps saved-mail RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.2.2 Outputting Text as a Poster or Sign

You can output any text you type directly to the printer (or to a PostScript file) by omitting the name of the
input file; enscript will read the text on the standard input until you type C—-d on a new line.

This is especially useful for making a quick—and-dirty sign or poster——to do this, specify a large font for the
text, such as Helvetica Bold at 72 points, and omit the display of default headers.

« To print a sign in 72—point Helvetica Bold type to a PostScript printer, type:

$ enscript —-B —f "Helvetica—Bold72" RET
RET

CAUTION RET

RET

WET PAINT! RET

C-d

72-point type is very large; use the "——word-wrap' option with longer lines of text to wrap lines at word
boundaries if necessary. You might need this option because at these larger font sizes, you run the risk of

16. Typesetting and Word Processing 230

The Linux Cookbook: Tips and Techniques for Everyday Use:

making lines that are longer than could fit on the page. You can also use the "—r' option to print the text in
landscape orientation, as describe@irtputting Text in Landscape Orientation.

 To print a sign in 63—point Helvetica Bold across the long side of the page, type:

$ enscript —B -r ——word-wrap —f "Helvetica—Bold63" RET
RET

RET

CAUTION -— WET PAINT! RET

C-d

NOTE: To make a snazzier or more detailed message or sign, you would create a file in a text editor and
justify the words on each line in the file as you want them to print, with blank lines where necessary. If you're
getting that complicated with it, it would also be wise to use the "—p' option once to output to a file first,

and preview the file before printing it (see secfaviewing a PostScript File).

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.2.3 Outputting Text with Language Highlighting

The enscript tool currently recognizes the formatting of more than forty languages and formats, from the
Perl and C programming languages to HTML, email, and Usenet news articles; enscript can highlight
portions of the text based on its syntax. In Unix—speak, this is called pretty—printing.

The following table lists the names of some of the language filters that are available at the time of this writin
and describes the languages or formats they're used for.

FILTER LANGUAGE OR FORMAT

ada Ada95 programming language.

asm Assembler listings.

awk AWK programming language.

bash Bourne—Again shell programming language.
o C programming language.

changelog Changelog files.

cpp C++ programming language.

csh C-Shell script language.

delphi Delphi programming language.

diff Normal "difference reports" made from diff.
diffu Unified "difference reports" made from diff.
elisp Emacs Lisp programming language.
fortran Fortran77 programming language.

haskell Haskell programming language.

16. Typesetting and Word Processing 231

html

idl

java
javascript
ksh

m4

mail
makefile
nroff

objc
pascal
perl
postscript
python
scheme
sh

skill

sql

states
Synopsys
tcl

tcsh

vba
verilog
vhd|

vrml

zsh

The Linux Cookbook: Tips and Techniques for Everyday Use:

HyperText Markup Language (HTML).

IDL (CORBA Interface Definition Language).
Java programming language.

JavaScript programming language.

Korn shell programming language.

M4 macro processor programming language.
Electronic mail and Usenet news articles.
Rule files for make.

Manual pages formatted with nroff.
Objective—C programming language.

Pascal programming language.

Perl programming language.

PostScript programming language.

Python programming language.

Scheme programming language.

Bourne shell programming language.
Cadence Design Systems Lisp-like language.
Sybase 11 SQL.

Definition files for states.

Synopsys dc shell scripting language.

Tcl programming language.

TC-Shell script language.

Visual Basic (for Applications).

Verilog hardware description language.
VHSIC Hardware Description Language (VHDL).
Virtual Reality Modeling Language (VRML97).
Z-shell programming language.

To pretty—print a file, give the name of the filter to use as an argument to the "—E' option, without any

whitespac

*To

 To pretty—print an email message saved to the file 'important—-mail', and output it with no

e between the option and argument.

pretty—print the HTML file “index.html’, type:

$ enscript —~Ehtml index.html RET

headers to a file named “important-mail.ps’, type:

$ enscript -B —Email —p important-mail.ps important-mail RET

16. Typesetting and Word Processing

232

The Linux Cookbook: Tips and Techniques for Everyday Use:

Use the special "——help—pretty—print' option to list the languages supported by the copy of
enscript you have.

» To peruse a list of currently supported languages, type:

$ enscript ——help-pretty—print | less RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.2.4 Outputting Text with Fancy Headers

To output text with fancy graphic headers, where the header text is set in blocks of various shades of gray,
use enscript with the "=G' option.

* To print the contents of the text file "saved—mail' with fancy headers on a PostScript printer,
type:

$ enscript —G saved-mail RET

» To make a PostScript file called “saved—mail.ps' containing the contents of the text file
“saved-mail', with fancy headers, type:

$ enscript -G —p saved-mail.ps saved—-mail RET

Without the "—G' option, enscript outputs text with a plain header in bold text, printing the file name and
the time it was last modified. The "—B' option, as described earlier, omits all headers.

You can customize the header text by quoting the text you want to use as an argument to the "—b' option.
Use the special symbol "$%' to specify the current page number in the header text.

* To print the contents of the text file "'saved—mail' with a custom header label containing the
current page number, type:

$ enscript —b "Page $% of the saved email archive" saved-mail RET

NOTE: You can create your own custom fancy headers, too—-this is described in the
"CUSTOMIZATION' section of the enscriptman page.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16. Typesetting and Word Processing 233

The Linux Cookbook: Tips and Techniques for Everyday Use:
16.2.5 Outputting Text in Landscape Orientation

To output text in landscape orientation, where text is rotated 90 degrees counter—clockwise, use the
“—r' option.

 To print the contents of the text file “'saved—mail' to a PostScript printer, with text set in
28-point Times Roman and oriented in landscape orientation, type:

$ enscript —f "Times—Roman28" —r saved-mail RET

The "—r' option is useful for making horizontal banners by passing output of the figlet tool to
enscript (see sectiohlorizontal Text Fonts).

« To output the text "This is a long banner' in a figlet font and write it to the default
printer with text set at 18—point Courier and in landscape orientation, type:

$ figlet "A long banner" | enscript —B -r —f "Courierl8" RET

(<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.2.6 Outputting Multiple Copies of Text

To output multiple copies of text when sending to the printer with enscript, give the number as an
argument to the "—#' option. This option doesn't work when sending to a file, but note that Ipr takes the

same option (see secti@minting Multiple Copies of a Job).

» To print three copies of the text file “'saved—mail' to a PostScript printer with the default
enscript headers, type:

$ enscript —#3 saved-mail RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.2.7 Selecting the Pages of Text to Output

To specify which pages of a text are output with enscript, give the range of page number(s) as an
argument to the "—a' option.

16. Typesetting and Word Processing 234

The Linux Cookbook: Tips and Techniques for Everyday Use:

 To print pages two through ten of file “saved—-mail' with the default enscript headers, type:

$ enscript —a2-10 saved-mail RET

To print just the odd or even pages, use the special “odd' and “even' arguments. This is good for printing
double-sided pages: first print the odd—numbered pages, and then feed the output pages back into the print
and print the even—numbered pages.

 To print the odd—numbered pages of the file "saved—mail' with the default headers, type:

$ enscript —a odd saved-mail RET

* To print the even—-numbered pages of the file “saved-mail' with the default headers, type:

$ enscript —a even saved-mail RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.2.8 Additional PostScript Output Options

The following table describes some of enscript's other options.

OPTION DESCRIPTION

—number Specify number of columns per page; for example, to specify four
columns per page, use —4'.

—apages Specify the page numbers to be printed, where pages is a
comma-—delineated list of page numbers. Specify individual pages
by their numbers, and specify a range of pages by giving the first
and last page numbers in the range separated by a hyphen ("-".
The special “odd' prints odd—numbered pages and
“even' prints even—numbered pages.

—dprinter Spool output to the printer named printer.

—-Elanguage "Pretty—print" the text written in the specified language with
context highlighting.

—Hnumber Specify the height of highlight bars, in lines (without number, the

value of 2 is used).

—inumber Indent lines by number characters, or follow number with a letter
denoting the unit to use: "¢’ for centimeters, 'i' for inches, or
p' for PostScript points (1/72 inch).

—Ifilter Pass input files through filter, which can be a tool or quoted
command.

16. Typesetting and Word Processing 235

The Linux Cookbook: Tips and Techniques for Everyday Use:

—j Print borders around columns.

-Lnumbers Specify the number of lines per page.

—utext Specify a quoted string "underlay” to print underneath every page.

—Unumber Specify the number of logical pages to print on each page of
output.

——highlight-bar—gray=number Specify the level of gray color to be used in printing the highlight
bars, from 0.0 (gray) to 1.0 (white).

——margins= Adjust left, right, top, and bottom page margins; the measurements

left:right: are in PostScript points, and, when specifying the values, any can

top:bottom be omitted. (Given on one line all as one long option.)

——rotate—even—pages Rotate each even—-numbered page 180 degrees.

[<] [>] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.3 LyX Document Processing

@sf{Debian}: “lyx'

@sf{WWW}: http://www.lyx.org/

LyX is a relative newcomer to the typesetting and word—processing arena, and it is one of the most genuine
fresh ideas in the field: it's a kind of word processor for writing LaTeX input (see sg@gpenetting with

TeX and Friends). It's a visual, graphic editor for X, but it doesn't emulate the output paper directly on the
display screen. In contrast to specifying exactly how each character in the document will look ("make this
word Helvetica Bold at 18 points"), you specify the structure of the text you write ("make this word a chapter
heading"). And, in contrast to the WYSIWYG paradigm, its authors call the new approach
WYSIWYM---"What you see is what you mean."

LyX comes with many document classes already defined——such as letter, article, report, and
book—--containing definitions for the elements these document types may contain. You can change the loo
of each element and the look of the document as a whole, and you can change the look of individual
selections of text, but with these elements available, it's rarely necessary.

Since LyX uses LaTeX as a back—end to do the actual typesetting, and LyX is capable of exporting
documents to LaTeX input format, you can think of it as a way to write LaTeX input files in a GUI without
having to know the LaTeX language commands.

However, even those who do use LaTeX and related typesetting languages can get some use out of LyX:

many people find it quick and easy to create some documents in LyX that are much harder to do in LaTeX,
such as multi-column newsletter layouts with illustrations.

(One excellent example of this_is_http://www.bcgs.ora/newsletters/bcas_newsletter—2000-01.pdf)

You can also import your LaTeX files (and plain text) into LyX for further layout or manipulation.

The following recipes show how to get started using LyX, and where to go to learn more about it.

16. Typesetting and Word Processing 236

http://www.lyx.org/
http://www.bcgs.org/newsletters/bcgs_newsletter-2000-01.pdf

The Linux Cookbook: Tips and Techniques for Everyday Use:

16.3.1 Features of LyX
16.3.2 Writing Documents with LyX Writing documents with LyX.

16.3.3 Learning More about LyX Learning more about LyX.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.3.1 Features of LyX

When editing in LyX, you'll see that it has all of the commands you'd expect from a word processor——for
example, some of the commands found on the Edit menu include Cut, Copy, Paste, Find and
Replace, and Spell Check.

Here are some of its major features:

» Automatic generation of table of contents, nested lists, and numbering of section headings.
 Easy insertion of PostScript figures and illustrations, which can be rotated, scaled, and captioned.
* WYSIWYG construction of tables.

« Undo and redo of any operation or sequence of operations.

« All LyX functions available from both keyboard commands and pull-down menus.

* All key—presses used for commands are configurable.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.3.2 Writing Documents with LyX

LyX runs under X, and you start it in the usual way——either by choosing it from the applications menu
provided by your window manager or by typing lyx in an xterm window. (For more about starting

programs in X, see sectigtunning a Program in X).

To start a new document from scratch, choose New from the File menu. You can also make a document
from one of the many templates included with LyX, which have the basic layout and settings for a particular
kind of document all set up for you——just fill in the elements for your actual document. To make a new
document from a template, choose New from template from the File menu, and then select the name

of the template to use.

The following table lists the names of some of the included templates and the kind of documents they're

16. Typesetting and Word Processing 237

The Linux Cookbook: Tips and Techniques for Everyday Use:

usually used for:

TEMPLATE FILE DOCUMENT FORMAT

aapaper.lyx Format suitable for papers submitted to Astronomy and Astrophysics.

dinbrief.lyx Format for letters typeset according to German conventions.

docbook_template.lyx Format for documents written in the SGML DocBook DTD.

hollywood.lyx Format for movie scripts as they are formatted in the U.S. film industry.

iletter.lyx Format for letters typeset according to Italian conventions.

latex8.lyx Format suitable for article submissions to IEEE conferences.

letter.lyx Basic format for letters and correspondence.

linuxdoctemplate.lyx Format for documents written in the SGML LinuxDoc DTD, as formerly
used by théinux Documentation Project.

revtex.lyx Article format suitable for submission to publications of the American

Physical Society (APS), American Institute of Physics (AIP), and Optical
Society of America (OSA).

slides.lyx Format for producing slides and transparencies.

To view how the document will look when you print it, choose View DVI from the File menu. This
command starts the xdvi tool, which previews the output on the screen. (For more on using xdvi, see

sectionPreviewing a DVI File).

To print the document, choose Print from the File menu. You can also export it to LaTeX, PostScript,
DVI, or plain text formats; to do this, choose Export from the File menu and then select the format to
export to.

NOTE: If you plan on editing the document again in LyX, be sure to save the actual ".lyx' document file.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.3.3 Learning More about LyX
The LyX Documentation Project has overseen the creation of a great deal of free documentation for LyX,
including hands—on tutorials, user manuals, and example documents.
The LyX Graphical Tour is a Web—based tutorial that shows you how to create and edit a simple LyX file.
LyX has a comprehensive set of built—in manuals, which you can read inside the LyX editor like any LyX
document, or you can print them out. All of the manuals are available from the Help menu.
» To run LyX's built=in tutorial, choose Tutorial from the Help menu.

This command opens the LyX tutorial, which you can then read on the screen or print out by selecting
Print from the File menu.

16. Typesetting and Word Processing 238

http://linuxdoc.org/
http://linuxdoc.org/
http://linuxdoc.org/
http://www.lyx.org/about/lgt-1.0/lgt.html
http://www.lyx.org/about/lgt-1.0/lgt.html
http://www.lyx.org/about/lgt-1.0/lgt.html
http://www.lyx.org/about/lgt-1.0/lgt.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

The following table lists the names of the available manuals as they appear on the Help menu, and describe
what each contains:

MANUAL DESCRIPTION

Introduction An introduction to using the LyX manuals, describing their contents and how to view
and print them.

Tutorial A hands-on tutorial to writing documents with LyX.

User's Guide The main LyX usage manual, describing all of the commonly used commands, options,
and features.

Extended This is "Part 1I" of the User's Guide, describing advanced features such as

Features bibliographies, indices, documents with multiple files, and techniques used in

special—case situations, such as fax support, SGML-Tools support, and using version
control with LyX documents.

Customization Shows which elements of LyX can be customized and how to go about doing that.

Reference Describes all of the menu entries and internal functions.

Manual

Known Bugs LyX is in active development, and like any large application, bugs have been found.
They are listed and described in this document.

LaTeX This document is automatically generated by LyX when it is installed on your system. It

Configuration is an inventory of your LaTeX configuration, including the version of LaTeX in use,

available fonts, available document classes, and other related packages that may be
installed on your system.

Finally, LyX includes example documents in the “/usr/X11R6/share/lyx/examples' directory.
Here's a partial listing of these files with a description of what each contains:

DOCUMENT FILE DESCRIPTION

Foils.lyx Describes how to make foils——-slides or overhead transparencies——with the
FoilTeX package.

ItemizeBullets.lyx Examples of the various bullet styles for itemized lists.

Literate.lyx An example of using LyX as a composition environment for "literate
programming."

MathLabeling.lyx Techniques for numbering and labeling equations.

Math_macros.lyx Shows how to make macros in Math mode.

Minipage.lyx Shows how to write two—column bilingual documents.

TableExamples.lyx Examples of using tables in LyX.

aa_head.lyx Files discussing and showing the use of LyX in the field of astronomy.

aa_paper.lyx
aas_sample.lyx

amsart-test.lyx Examples of documents written in the format used by the American
amsbook-test.lyx Mathematical Society.

docbook_example.lyx Example of a DocBook document.

multicol.lyx Example of a multi-column format.

scriptone.lyx Example of a Hollywood script.

16. Typesetting and Word Processing 239

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.4 Typesetting with TeX and Friends

@sf{Debian}: “tetex—-base'

@sf{Debian}: “tetex—bin’

@sf{Debian}: “tetex—doc'

@sf{Debian}: “tetex—extra’

@sf{Debian}: “tetex-lib'

@sf{WWW}: http://www.tug.ora/teTeX/

The most capable typesetting tool for use on Linux—based systems is the TeX typesetting system and relat
software. It is the premier computer typesetting system—-its output surpasses or rivals all other systems to
date. The advanced line and paragraph breaking, hyphenation, kerning, and other font characteristic policie:
and algorithms it can perform, and the level of precision at which it can do them, have yet to be matched in

word processors.

The TeX system itself-—not a word processor or single program, but a large collection of files and data—-is
packaged in distributions; teTeX is the TeX distribution designed for Linux.

TeX input documents are plain text files written in the TeX formatting language, which the TeX tools can
process and write to output files for printing or viewing. This approach has great benefits for the writer: the
plain text input files can be written with and exchanged between many different computer systems regardles
of operating system or editing software, and these input files do not become obsolete or unusable with new
versions of the TeX software.

Donald Knuth, the world's foremost authority on algorithms, wrote TeX in 1984 as a way to typeset his
books, because he wasn't satisfied with the quality of available systems. Since its first release, many
extensions to the TeX formatting language have been made—-the most notable being Leslie Lamport's
LaTeX, which is a collection of sophisticated macros written in the TeX formatting language, designed to
facilitate the typesetting of structured documents. (LaTeX probably gets more day-to—day use than the plair
TeX format, but in my experience, both systems are useful for different kinds of documents.)

The collective family of TeX and related programs are sometimes called "TeX and friends," and abbreviated
as ‘texmf' in some TeX referenc€b): for example, the supplementary files included with the bare TeX
system are kept in the “/usr/lib/texmf' directory tree.

The following recipes describe how to begin writing input for TeX and how to process these files for viewing
and printing. While not everyone wants or even has a need to write documents with TeX and LaTeX, these
formats are widely used——especially on Linux systems——so every Linux user has the potential to encounter
one of these files, and ought to know how to process them.

NOTE: "TeX" doesn't sound like the name of a cowboy, nor "LaTeX" like a kind of paint: the letters "T',
E', and “X' represent the Greek characters tau, epsilon, and chi (from the Greek “techne’, meaning art
and science). So the last sound in "TeX" is like the "ch' in "Bach’, and "LaTeX," depending on local
dialect, is pronounced either “lay—teck' or ‘lah—teck’'. Those who become highly adept at using the
system, Knuth calls "TeXnicians."

16. Typesetting and Word Processing 240

http://www.tug.org/teTeX/
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www-cs-faculty.stanford.edu/~knuth/taocp.html

The Linux Cookbook: Tips and Techniques for Everyday Use:

16.4.11sltaTeX or LaTeX File? Isita TeX or LaTeX file?
16.4.2 Processing TeX Files Processing TeX files.
16.4.3 Processing LaTeX Files Processing LaTeX files.

16.4.4 Writing Documents with TeX and LaTeX Writing TeX files.
16.4.5 TeX and LaTeX Document Templates TeX and LaTeX document templates.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.4.1 IsltaTeX or LaTeX File?

There are separate commands for processing TeX and LaTeX files, and they're not interchangeable, so whe
you want to process a TeX or LaTeX input file, you should first determine its format.

By convention, TeX files always have a ".tex' file name extension. LaTeX input files sometimes have a
“.latex' or ".Itx' file name extension instead, but not always——one way to tell if a ".tex' file is

actually in the LaTeX format is to use grep to search the file for the text \document', which every

LaTeX (and not TeX) document will have. So if it outputs any lines that match, you have a LaTeX file. (The
regular expression to use with grep is "\\document', since backslash characters must be specified with

two backslashes.)

» To determine whether the file “gentle.tex' is a TeX or LaTeX file, type:

$ grep \\document' gentle.tex RET
$

In this example, grep didn't return any matches, so it's safe to assume that ‘gentle.tex' is a TeX file
and not a LaTeX file.

NOTE: For more on grepand searching for regular expressions,Begular Expressions——Matching Text
Patterns.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.4.2 Processing TeX Files

Use tex to process TeX files. It takes as an argument the name of the TeX source file to process, and it
writes an output file in DVI ("DeVice Independent”) format, with the same base file name as the source file,
but with a ".dvi' extension.

16. Typesetting and Word Processing 241

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To process the file "gentle.tex’, type:

$ tex gentle.tex RET

Once you have produced a DVI output file with this method, you can do the following with it:

 Preview it on the screen with xdyiseePreviewing a DVI File
* Print it with dvips or Ipr ; seePrinting with Dvips

» Convert it to PostScript with dvips seePreparing a DVI File for Printing; (then, you can also
convert the PostScript output to PDF or plain text)

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.4.3 Processing LaTeX Files

The latex tool works just like tex, but is used to process LaTeX files.

* To process the LaTeX file “Ishort.tex', type:

$ latex Ishort.tex RET

This command writes a DVI output file called “Ishort.dvi'.

You may need to run latex on a file several times consecutively. LaTeX documents sometimes have

indices and cross references, which, because of the way that LaTeX works, take two (and in rare cases thre
or more) runs through latex to be fully processed. Should you need to run latex through a file more than
once in order to generate the proper references, you'll see a message in the latex processing output after
you process it the first time instructing you to process it again.

» To ensure that all of the cross references in “Ishort.tex' have been generated properly, run the
input file through latex once more:

$ latex Ishort.tex RET

The “Ishort.dvi' file will be rewritten with an updated version containing the proper page numbers in
the cross reference and index entries. You can then view, print, or convert this DVI file as described in the
previous recipe for processing TeX files.

16. Typesetting and Word Processing 242

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.4.4 Writing Documents with TeX and LaTeX

@sf{WWW}: ftp://ctan.tug.org/tex—archive/documentation/gentle.tex
@s{{WWW}: ftp://ctan.tug.org/tex—archive/documentation/lshort/
To create a document with TeX or LaTeX, you generally use your favorite text editor to write an input

file containing the text in TeX or LaTeX formatting. Then, you process this TeX or LaTeX input file to create
an output file in the DVI format, which you can preview, convert, or print.

It's an old tradition among programmers introducing a programming language to give a simple program that
just outputs the text "Hello, world' to the screen; such a program is usually just detailed enough to give
those unfamiliar with the language a feel for its basic syntax.

We can do the same with document processing languages like TeX and LaTeX. Here's the "Hello, world" fol
a TeX document:

Hello, world
\end

If you processed this input file with tex, it would output a DVI file that displayed the text "Hello,
world' in the default TeX font, on a default page size, and with default margins.

Here's the same "Hello, world" for LaTeX:

\documentclass{article}
\begin{document}
Hello, world
\end{document}

Even though the TeX example is much simpler, LaTeX is generally easier to use fresh "out of the box" for
writing certain kinds of structured documents——such as correspondence and articles——because it comes wil
predefined document classehich control the markup for the structural elements the document cég@ins

Plain TeX, on the other hand, is better suited for more experimental layouts or specialized documents.

The TeX and LaTeX markup languages are worth a book each, and providing an introduction to their use is
well out of the scope of this text. To learn how to write input for them, | suggest two excellent tutorials,
Michael Doob's A Gentle Introduction to TeX, and Tobias Oetiker's The Not So Short Introduction to
LaTeX—-——each available on the WWW at the URLSs listed above. These files are each in the respective
format they describe; in order to read them, you must process these files first, as described in the two
previous recipes.

Good LaTeX documentation in HTML format can be found installed on many Linux systems in the
“/usr/share/texmf/doc/latex/latex2e—html/* directory; use the lynx browser to view it

(see sectioBrowsing Files).

Some other typesetting systems, such as LyX, SGMLtools, and Texinfo (all described elsewhere in this

16. Typesetting and Word Processing 243

ftp://ctan.tug.org/tex-archive/documentation/gentle.tex
ftp://ctan.tug.org/tex-archive/documentation/lshort/

The Linux Cookbook: Tips and Techniques for Everyday Use:

chapter), write TeX or LaTeX output, too——so0 you can use those systems to produce said output without
actually learning the TeX and LaTeX input formats. (This book was written in Emacs in Texinfo format, and
the typeset output was later generated by TeX.)

NOTE: The Oetiker text consists of several separate LaTeX files in the “Ishort' directory; download and
save all of these files.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.4.5 TeX and LaTeX Document Templates

@sf{WWW}: http://dsl.ora/comp/templates/

A collection of sample templates for typesetting certain kinds of documents in TeX and LaTeX can be founc
at the URL listed above. These templates include those for creating letters and correspondence, articles anc
term papers, envelopes and mailing lali28, and fax cover sheets. If you're interested in making typeset
output with TeX and LaTeX, these templates are well worth exploring.

To write a document with a template, insert the contents of the template file into a new file that has a
“.tex' or ".Itx' extension, and edit that. (Use your favorite text editor to do this.)

To make sure that you don't accidentally overwrite the actual template files, you can write—protect them (see
sectionWrite—Protecting a File):

$ chmod a-w template—file—-names RET

In the templates themselves, the bracketed, uppercase text explains what kind of text belongs there; fill in
these lines with your own text, and delete the lines you don't need. Then, process your new file with either
latex or tex as appropriate, and you've got a typeset document!

The following table lists the file names of the TeX templates, and describes their use. Use tex to process
files you make with these templates (see se@meessing TeX Files).

TEMPLATE FILE DESCRIPTION

fax.tex A cover sheet for sending fax messages.
envelope.tex A No. 10 mailing envelope.
label.tex A single mailing label for printing on standard 15-up sheets.

The following table lists the file names of the LaTeX templates, and describes th@@ubse latex to
process files you make with these templates (see s¢utimessing LaTeX Files).

TEMPLATE FILE DESCRIPTION
letter.ltx A letter or other correspondence.
article.Itx An article or a research or term paper.

16. Typesetting and Word Processing 244

http://dsl.org/comp/templates/

The Linux Cookbook: Tips and Techniques for Everyday Use:

manuscript.Itx A book manuscript.

There are more complex template packages available on the net that you might want to look at:

* Rob Rutten has assembled a very nice collection of LaTeX templates,
http://www.astro.uu.nl/~rutten/rrtex/templates/

» The largest listing of LaTeX and TeX templates and style files is in the TeX Catalogue Online,
ftp://ftp.cdrom.com:21/pub/tex/ctan/help/Catalogue/hier.html

« The Midnight Macros are a collection of TeX macros for printing booklets, bulk letters, and outlines,
ftp://ftp.cdrom.com/publ/tex/ctan/macros/generic/midnight/

* Bjorn Magnusson's LaTeX templates for folder and register labels,
http://www.ifm.liu.se/~bjmaa/latex.shtml

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.5 Writing Documents with SGMLtools

@sf{Debian}: ‘'sgml-tools'

@sf{WWW}: http://www.samltools.ora/

With the SGMLtools package, you can write documents and generate output in many different kinds of
formats——including HTML, plain text, PDF, and PostScript——all from the same plain text input file.

SGML ("Standard Generalized Markup Language") is not an actual format, but a specification for writing
markup languages; the markup language "formats" themselves are called DTDs ("Document Type
Definition"). When you write a document in an SGML DTD, you write input as a plain text file with markup
tags.

The various SGML packages on Linux are currently in a state of transition. The original SGML-Tools
package (known as LinuxDoc—SGML in another life; now SGMLtools v1) is considered obsolete and is no
longer being developed; however, the newer SGMLtools v2 (a.k.a. "SGMLtools Next Generation" and
"SGMLtools '98") is still alpha software, as_is SGMLtools-lite, a new subset of SGMLtools.

In the interim, if you want to dive in and get started making documents with the early SGMLtools and the
LinuxDoc DTD, it's not hard to do. While the newer DocBook DTD has become very popular, it may be best
suited for technical books and other very large projects——for smaller documents written by individual
authors, such as a multi-part essay, FAQ, or white paper, the LinuxDoc DTD still works fine.

And since the Linux HOWTOs are still written in LinuxDoc, the Debian project has decided to maintain the
SGMLtools 1.0 package independently.

The SGML-Tools User's Guide comes installed with the “sgml-tools' package, and is available in
several formats in the “/usr/doc/sgml-tools' directory. These files are compressed,; if you want to

16. Typesetting and Word Processing 245

http://www.astro.uu.nl/~rutten/rrtex/templates/
ftp://ftp.cdrom.com:21/pub/tex/ctan/help/Catalogue/hier.html
ftp://ftp.cdrom.com/pub/tex/ctan/macros/generic/midnight/
http://www.ifm.liu.se/~bjmag/latex.shtml
http://www.sgmltools.org/
http://sgmltools-lite.sourceforge.net/

The Linux Cookbook: Tips and Techniques for Everyday Use:

print or convert them, you have to uncompress them first (see s€ctinpressed Files).

To peruse the compressed text version of the SGML-Tools guide, type:

$ zless /usr/doc/sgml-tools/guide.txt.gz RET

« To print a copy of the PostScript version of the SGML-Tools guide to the default printer, type:

$ zcat /usr/doc/sgmli-tools/guide.ps.gz | Ipr RET

16.5.1 Elements of an SGML Document Elements of an SGML document.
16.5.2 Checking SGML Document Syntax Checking SGML document syntax.

16.5.3 Generating Output from SGML Making output from SGML source.
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.5.1 Elements of an SGML Document

A document written in an SGML DTD looks a lot like HTML——which is no coincidence, since HTML is a
subset of SGML. A very simple "Hello, world" example in the LinuxDoc DTD might look like this:

60;!doctype linuxdoc system62;
60;article62;

60;title62;An Example Document
60;author62;Ann Author

60;date62;4 May 2000

60;abstract62;

This is an example LinuxDoc document.
60;/abstract62;

60;sect62;Introduction
60;p62;Hello, world.

60;/article62;

A simple example document and the various output files it generates are on the SGMLtools site at
http://www.sgmltools.org/old—site/example/index.html.

The SGMLtools package also comes with a simple example file, "'example.sgml.gz', which is installed
in the “/usr/doc/sgmli-tools' directory.

16. Typesetting and Word Processing 246

http://www.sgmltools.org/old-site/example/index.html

The Linux Cookbook: Tips and Techniques for Everyday Use:
[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.5.2 Checking SGML Document Syntax

Use sgmicheck to make sure the syntax of an SGML document is correct——it outputs any errors it finds in
the document that is specified as an argument.

» To check the SGML file “‘myfile.sgml', type:

$ sgmicheck myfile.sgml RET

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

16.5.3 Generating Output from SGML

The following table lists the SGML converter tools that come with SGMLtools, and describes the kind of
output they generate. All take the name of the SGML file to work on as an argument, and they write a new
file with the same base file name and the file name extension of their output format.

TOOL DESCRIPTION

sgmi2html Generates HTML files.
sgml2info Generates a GNU Info file.
sgmi2lyx Generates a LyX input file.

sgml2latex Generates a LaTeX input file (useful for printing; first process Bsdnessing LaTeX Files,
and then print the resultant DVI or PostScript output file).

sgml2rtf Generates a file in Microsoft's "Rich Text Format."
sgml2txt Generates plain text format.
sgmi2xml Generates XML format.

» To make a plain text file from “myfile.sgml’, type:

$ sgmi2txt myfile.sgml RET

This command writes a plain text file called “myfile.txt'.

To make a PostScript or PDF file from an SGML file, first generate a LaTeX input file, run it through LaTeX
to make a DVI output file, and then process that to make the final output.

16. Typesetting and Word Processing 247

The Linux Cookbook: Tips and Techniques for Everyday Use:

» To make a PostScript file from “myfile.sgml', type:

$ sgml2latex myfile.sgml RET

$ latex myfile.latex RET

$ dvips -t letter —o myfile.ps myfile.dvi RET
$

In this example, sgml2latex writes a LaTeX input file from the SGML source file, and then the

latex tool processes the LaTeX file to make DVI output, which is processed with dvips to get the final
output: a PostScript file called "myfile.ps' with a paper size of US letter.

To make a PDF file from the PostScript file, you need to take one more step and use ps2pdf, part of the
gs or Ghostscript package; this converts the PostScript to PDF.

» To make a PDF file from the PostScript file "myfile.ps', type:

$ ps2pdf myfile.ps myfile.pdf RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

16.6 Other Word Processors and Typesetting Systems

The following table describes other popular word processors and typesetting tools available for Linux. Those

systems not in general use have been silently omitted.

SYSTEM DESCRIPTION

AbiWord A graphical, WYSIWY G-style word processor for Linux systems. It can
read Microsoft Word files. {@sf{WWW}}:_http://www.abisource.com/

groff GROFF is the latest in a line of phototypesetting systems that have been

available on Unix—based systems for years; the original in this line was
roff ("runoff,” meaning that it was for files to be run off to the printer).
groff is used in the typesetting of man pages, but it's possible to use it
to create other kinds of documents, and it has a following of staunch
adherents. To output the tutorial file included with the

groff distribution to a DVI file called “intro.dvi', type:

$ zcat /usr/doc/groff/me-intro.me.gz | groff
—-me -T dvi 62; intro.dvi RET

{@sf{Debian}}: “groff'
Maxwell A graphical word processor for use in X. {@sf{WWW}}:
http://www.eeyore—mule.demon.co.uk/

PostScript The PostScript language is generally considered to be a format generated

by software, but some people write straight PostSd@iptiverting Plain

16. Typesetting and Word Processing 248

http://www.abisource.com/
http://www.eeyore-mule.demon.co.uk/

StarWriter

Texinfo

The Linux Cookbook: Tips and Techniques for Everyday Use:

Text for Output, has recipes on creating PostScript output from text,
including outputting text in a font. People have written PostScript
template files for creating all kinds of documents——from desktop
calendars to mandalas for meditation. The Debian “cdlabelgen' and
“cd-circleprint' packages contain tools for writing labels for

compact discs. Also of interest are Jamie Zawinski's templates for
printing label inserts for video and audio tapes; edit the files in a text
editor and then view or print them as you would any PostScript file.
{@s{WWW}}: http://www.jwz.org/audio—tape.ps {@sf{WWW}}:
http://www.jwz.org/video—tape.ps

A traditional word processor for Linux systems, part of the StarOffice
application suite. It can also read Microsoft Word files. {@sf{WWW}}:
http://www.sun.com/staroffice/

Texinfo is the GNU Project's documentation system and is an excellent
system for writing FAQs or technical manuals. It allows for the inclusion
of in—line EPS images and can produce both TeX-based, HTML, and
Info output—-use it if this matches your needs. {@sf{Debian}}
‘tetex—base' {@sT{WWW}}: hitp://www.texinfo.ora/

(<] [=]

[=<] [Up] [>>] [Top] [Contents] [Index] [2]

16. Typesetting and Word Processing 249

http://www.jwz.org/audio-tape.ps
http://www.jwz.org/video-tape.ps
http://www.sun.com/staroffice/
http://www.texinfo.org/

17. Fonts

A font is a collection of characters for displaying text, normally in a common typeface and with a common
size, boldness, and slant.

This chapter discusses the most popular kinds of fonts used on Linux systems: display fonts for use in the X
Window System, fonts for use in virtual consoles, and the "fonts" often seen in Usenet and email composed
entirely of ASCII characters.

Omitted are reference of the use of fonts with TeX, which are the kind of fonts you're most likely to use whet
producing typeset output—-it is beyond the scope of this book to cover that issue with the space it needs.
However, to print a text file with a font, s@atputting Text in a Font.

For more information on fonts and the tools to use them, see the Font H®&& €ectioReading System
Documentation and Help Files).

17.1 X Fonts Fonts in X.
17.2 Console Fonts Fonts in the console.
17.3 Text Fonts Fonts made of ASCII text characters.

17.4 Other Font Tools Other kinds of fonts.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

17.1 X Fonts

You can specify a font as an option to most X clients, so that any text in the client is written in the given font
The recipe that describes how to do this iSgecifying a Window Font.

When you specify a font as an option, you have to give the X font name, which is the exact name used to
specify a specific font in X. (An easy way to get the X font name is described in the first recipe in this

section.) X font names consist of 14 fields, delimited by (and beginning with) a hyphen. All fields must be
specified, and empty fields are permitted:

—fndry—-fmly-wght-slant-swdth—-adstyl-pxlsz
—ptsz—resx-resy—spc—avgwdth-rgstry—encdng

The preceding line was split because of its length, but X font names are always given on one line.
The following table describes the meaning of each field.

FIELD DESCRIPTION

17. Fonts 250

The Linux Cookbook: Tips and Techniques for Everyday Use:

fndry The type foundry that digitized and supplied the font data.
fmly The name of the typographic style (for example, “courier’).

wght The weight of the font, or its nominal blackness, the degree of boldness or thickness of its
characters. Values include “heavy', "bold’, ‘'medium’, “light', and “thin'.

slant The posture of the font, usually “r' (for ‘roman’, or upright), "i' (Citalic’, slanted
upward to the right and differing in shape from the roman counterpart), or "o’ (Coblique’,
slanted but with the shape of the roman counterpart).

swdth The proportionate width of the characters in the font, or its nominal width, such as "normal’,
“condensed’, "extended’, ‘narrow', and “wide'.

adstyl Any additional style descriptions the particular font takes, such as “serif' (fonts that have
small strokes drawn on the ends of each line in the character) or “sans serif' (fonts that

omit serifs).
pxlsz The height, in pixels, of the type. Also called body size.
ptsz The height, in points, of the type.
resx The horizontal screen resolution the font was designed for, in dpi ("dots per inch").
resy The vertical screen resolution the font was designed for, in dpi.
spc The kind of spacing used by the font (its escapement class); either "p' (a proportional font

containing characters with varied spacing), ‘m' (a monospaced font containing characters with
constant spacing), or “c' (a character cell font containing characters with constant spacing and
constant height).

avgwdth The average width of the characters used in the font, in 1/10th pixel units.
rgstry The international standards body, or registry, that owns the encoding.
encdng The registered name of this character set, or its encoding.

17.1.1 Selecting an X Font Name Selecting an X font name.
17.1.2 Listing Available X Fonts Listing available fonts.

17.1.3 Displaying the Characters in an X Font Viewing a character set in a font.
17.1.4 Resizing the Xterm Font Setting the font in an Xterm.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

17.1.1 Selecting an X Font Name

X font names can be long and difficult to type; to make it easier, use the xfontsel client, an interactive
tool for picking X fonts and getting their X font names.

When you start xfontsel, it looks like this (the window frame will differ depending on your window
manager):

17. Fonts 251

The Linux Cookbook: Tips and Techniques for Everyday Use:

N xfontsel [al 5 Ed
1452 nanes natch

=fndry-f nly-ught-slant-slldth-adstgl-pxlsz-ptSz-resn-resg-spc-avgHdth-rgstrg-encd.ng

-

The row of buttons are pull-down menus containing options available on your system for each field in the X
font name. Use the mouse to select items from each menu, and the X font you have selected is shown in th
main window. Above it is written its X font name.

* To make the X font name the X selection, click the mouse on the button labeled select.

This example makes the X font name the X selection, which makes it possible to paste the X font name to a
command line or into another window (see secHasting Text).

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

17.1.2 Listing Available X Fonts

Use xlsfonts to list the X font families, sizes, and weights available on your system. Supply a pattern in

guotes as an argument, and it outputs the names of all X fonts installed on the system that match that patte!
by default, it lists all fonts.

* To list all the X fonts on the system, type:

$ xlsfonts RET

* To list all the X fonts on the system whose name contains the text “rea’, type:

$ xlIsfonts *rea* RET

* To list all the bold X fonts on the system, type:

$ xlIsfonts "*bold* RET

17. Fonts 252

The Linux Cookbook: Tips and Techniques for Everyday Use:

NOTE: This is not a way to display the characters in a font; for that, use xfd, described next. Furthermore,
to browse through available X fonts, you want to use xfontsel, as in the previous recipe.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

17.1.3 Displaying the Characters in an X Font

Use the xfd tool ("X font display") to display all of the characters in a given X font. Give the X font name
you want to display in quotes as an argument to the "—fn' option.

* To display the characters in a medium Courier X font, type:

$ xfd —fn '=*—courier-medium-r—-normal-—*-100—*—*—*—*-ijs08859-1' RET

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

17.1.4 Resizing the Xterm Font

SeeSpecifying Window Font for how to specify the font to use in an xterm window in X. The xterm tool
is usually used to run a shell while in X, and many people like to specify which font is used for this window.

To resize the current font when the xterm is running, press and hold CTRL and right—click anywhere in the
xterm window. A menu will appear that gives you the size options, from Unreadable and Tiny to
Huge. To resize the font to its original size, choose Default.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

17.2 Console Fonts

Console fonts are screen fonts for displaying text on the Linux console (and not in the X Window System).
Console fonts are stored in the “/usr/share/consolefonts' directory as compressed files; to install

new console fonts, have the system administrator make a

“/usr/local/share/consolefonts' directory and put the font files in there.

These recipes show how to set the console font, and how to display a table containing all of the characters i
the current font.

17. Fonts 253

The Linux Cookbook: Tips and Techniques for Everyday Use:

17.2.1 Setting the Console Font Setting the console font.
17.2.2 Displaying the Characters in a Console Showing all characters in the console
Font font.

[<] [=] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

17.2.1 Setting the Console Font

Use consolechars to set the current console font; give the base file name of a console font as an
argument to the "—f' option.

 To set the console font to the scrawl_w font, type:

$ consolechars —f scrawl_w RET

Some font files contain more than one height (or size) of the font. If a font contains more than one encoding
for different heights, give the height to use as an argument to the "—H' option. (If you try to do it without the
option anyway, consolechars will output a list of available sizes.)

Common console font heights include 8 (for 8x8 fonts), 14 (for 8x14 fonts), and 16 (for 8x16 fonts).

* To set the console font to the 8x8 size sc font, type:

$ consolechars -H 8 —-f sc RET

(<] [>] [=<] [Up] [>>] [Top] [Contents] [Index] [2]

17.2.2 Displaying the Characters in a Console Font
Use showcfont to display all of the characters in the current console font.

« To list all of the characters in the current console font, type:

$ showcfont RET

17. Fonts 254

The Linux Cookbook: Tips and Techniques for Everyday Use:

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

17.3 Text Fonts

Text fonts are fonts created from the arrangement of ASCII characters on the screen; they are often seen in
Usenet articles and email messages, included as decorative or title elements in text files, and used for printi
simple banners or posters on a printer.

The making of "fonts" (and even pictures) from the arrangement of ASCII characters is known as ascii art.
The following recipes describe methods of outputting text in these kind of fonts.

17.3.1 Horizontal Text Fonts Horizontal text fonts.
17.3.2 Making a Text Banner Making text banners.

[<] [=] [=<] [Up] [>=] [Top] [Contents] [Index] [2]

17.3.1 Horizontal Text Fonts

The figlet filter outputs text in a given text font. Give the text to output as an argument, quoting text
containing shell metacharacters (see se@i@ssing Special Characters to Commands).

» To output the text "news alert' in the default figlet font, type:

$ figlet news alert RET

This command outputs the following:

|_T/_\\/\//_| R N VO S B
[T AV VA_NTCHTT] T
I

Fonts for figlet are kept in the “/ust/lib/figlet' directory; use the "—f' option followed by the
base n