
Hyatt Regency San Francisco Airport Burlingame, CA

San Francisco, CA
October 18-21, 2005

Zend PHP Certification Tutorial

Marco Tabini
php|architect

marcot@tabini.ca

www.phparch.com

October 18, 2005

Oct. 18, 2005

Welcome!

• A few words about me

• A few words about what we’ll be covering
 This is not a PHP tutorial!
 I expect that you already have some PHP experience
 Goals of this tutorial
 Structure

2

Oct. 18, 2005

A bit about the exam

• We’ll talk about the exam proper at the end of
the tutorial

• The exam covers only PHP 4 — not PHP 5

• If you are taking the exam here, it will be on
paper, not on a computer

• The exam tests your knowledge of PHP, not your
knowledge of programming

3

Oct. 18, 2005

Part I - The PHP Language

• What we’ll cover in this section:
 PHP Tags
 File inclusion
 Data types & typecasting
 Variables and constants
 Operators
 Conditionals
 Iteration
 Functions
 Objects

4

Oct. 18, 2005

Tags

• Tags “drop” you out of HTML and into PHP mode

• PHP recognizes several types of tags:
 Short tags: <? ?>
 Special tags: <?= ?>
 Regular tags: <?php ?>
 ASP tags: <% %>
 HTML script tags: <script language=”PHP”> </script>

5

Oct. 18, 2005

File Inclusion

• External files can be included in a script using
either include() or require()

• Both are constructs, not functions:
 include (‘myfile.php’); or include ‘myfile.php’;

• They behave in exactly the same way, except
for how they handle failure
 include generates a warning
 require throws an error
 Upon inclusion, the parser “drops off” of PHP mode

and enters HTML mode again

• Variants: include_once()/require_once()
 Prevent multiple inclusions from within the same script

6

Oct. 18, 2005

Data Types

• PHP is not a typeless language

• It supports many different data types

• It is loosely typed
• The interpreter automatically “juggles” data

types as most appropriate

• “Most appropriate” doesn’t necessarily mean
always appropriate

7

Oct. 18, 2005

Data Types — Numeric/Boolean

• PHP recognizes two types of numeric values:
 Integers
 Floats

• Boolean values are used for logic operations
 True / False
 Easily converted to integers: non-zero / zero

• Result type of operations depends on types of
operands
 For example: int + int == int — int / float == float

 int / int == int or float

• Numbers can be specified in a number of ways:
 Decimal (123), Hexadecimal (0x123) and Octal (0123)

8

Oct. 18, 2005

Data Types — Strings

• Strings are heterogeneous collections of single-
byte characters
 They don’t necessary have to be text
 They can represent Unicode as well, but cannot be

manipulated by the standard PHP functions

• PHP supports three ways of declaring strings:
 Single quotes: ‘test 1 2 3’
 Double quotes: “test 1 2 3\n”
 Heredoc syntax: <<<EOT test 1 2 3

 EOT;

• Main differences:
 Support for variable substitution / escape sequences
 All strings support newline characters

9

Oct. 18, 2005

Data Types — Arrays

• Arrays are ordered structures that map a key to
a value

• Values can be of any type—including other
arrays

• Keys can be either integer numeric or strings
 Keys are unique
 Negative numbers are valid keys

10

Oct. 18, 2005

Data Types — Resources / Null

• Resources are special containers that identify
external resources
 They can only be operated on directly as part of

logical operations
 They are usually passed to C-level functions to act on

external entities
 Examples: database connections, files, streams, etc.

• NULL is a special value that indicates... no value!
 NULL converts to Boolean false and Integer zero

11

Oct. 18, 2005

Data Types — Objects

• Objects are containers of data and functions
 The individual data elements are normally called

properties
 The functions are called methods
 Individual members (methods / properties) of an

object are accessed using the -> operator
 We’ll cover objects in more depth later in this section

12

Oct. 18, 2005

Typecasting

• PHP’s ability to juggle among different data
types is not entirely dependable

• There are circumstances in which you will want
to control how and when individual variables
are converted from one type to another

• This is called Typecasting

13

Oct. 18, 2005

Typecasting — Integers

• You can typecast any variable to an integer
using the (int) operator:
 echo (int) “test 1 2 3”;

• Floats are automatically truncated so that only
their integer portion is maintained
 (int) 99.99 == 99

• Booleans are cast to either one or zero:
 (int) TRUE == 1 — (int) FALSE == 0

• Strings are converted to their integer equivalent:
 (int) “test 1 2 3” == 0 , (int) “123” == 123
 (int) “123test” == 123 // String begins with integer

• Null always evaluates to 0
14

Oct. 18, 2005

Typecasting — Booleans

• Data is cast to Boolean using the (bool)
operator:
 echo (bool) “1”;

• Numeric values are always TRUE unless they
evaluate to zero

• Strings are always TRUE unless they are empty
 (bool) “FALSE” == true

• Null always evaluates to FALSE

15

Oct. 18, 2005

Typecasting — Strings

• Data is typecast to a string using the (string)
operator:
 echo (string) 123;

• Numeric values are converted to their decimal
string equivalent:
 (string) 123.1 == “123.1”;

• Booleans evaluate to either “1” (TRUE) or an
empty string (FALSE)

• NULL evaluates to an empty string

• Numeric strings are not the same as their integer
or float counterparts!

16

Oct. 18, 2005

Typecasting — Arrays / Objects

• Casting a non-array datum to an array causes a
new array to be created with a single element
whose key is zero:
 var_dump ((array) 10) == array (10);

• Casting an object to an array whose elements
correspond to the properties of the object
 Methods are discarded

• Casting a scalar value to an object creates a
new instance of stdClass with a single property
called “scalar”
 Casting an array to an object create an instance of

stdClass with properties equivalent to the array’s
elements

17

Oct. 18, 2005

Identifiers / Variables / Constants

• Identifiers are used to identify entities within a
script
 Identifiers must start with a letter or underscore and

can contain only letters, underscores and numbers

• Variables
 Containers of data
 Only one data type at any given time
 Variable names are case-sensitive identifiers prefixed

with a dollar sign ($my_var)
 Variables can contain references to other variables

• Constants
 Assigned value with declare(), cannot be modified
 User-defined constants are not case-sensitive

18

Oct. 18, 2005

Substitution / Variable variables

• Variables can be substituted directly within a
double-quoted or Heredoc string
 $a = 10;

echo “\$a is: $a”; // Will output $a is: 10

• Variables values can be used to access other
variables (variable variables):
 $a = “b”;

$b = 10;
echo $$a; // will output 10

19

Oct. 18, 2005

Statements

• Statements represent individual commands that
the PHP interpreter executes
 Assignment: $a = 10;
 Construct: echo $a;
 Function call: exec ($a);

• Statements must be terminated by a semicolon
 Exception: the last statement before the end of a PHP

block

20

Oct. 18, 2005

Operations

• PHP supports several types of operations:
 Assignment
 Arithmetic
 Bitwise
 String
 Comparison
 Error control
 Logical

21

Oct. 18, 2005

Operations — Assignment

• The assignment operator ‘=’ makes it possible to
assign a value to a variable
 $a = 10;

• The left-hand operand must be a variable
 Take advantage of this to prevent mistakes by

“reversing” logical operations (as we’ll see later)
 10 = $a; // Will output error

22

Oct. 18, 2005

Operations — Arithmetic

• These operators act on numbers and include the
four basic operations:
 Addition: $a + $b
 Subtraction: $a - $b
 Multiplication: $a * $b
 Division: $a / $b

• Remember that dividing by zero is illegal

• They also include the modulus operator
 Determines the remainder of the integer division

between two numbers: 10 % 4 = 2
 Unlike proper modulus, PHP allows a negative right-

hand operand
• 10 % -4 = 2

23

Oct. 18, 2005

Operations — Bitwise

• Bitwise operations manipulate numeric values at
the bit level
 AND (&) — set bit if it is set in both operands

• 1 & 0 == 0

 OR (|) — set bit if is is set in either operand
• 1 | 0 == 1

 XOR (^) — set bit if it is set in either, but not both
• 1 ^ 1 == 0

 NOT — invert bits
• ~0 == -1

 Shift left/right (<</>>) - shift bits left or right
• 1 << 2 ==4 == 8 << 1
• Excellent shortcuts for integer multiplications by powers of

two
24

Oct. 18, 2005

Operators — Combined

• Numeric and bitwise operators can be
combined with an assignment:
 $a += 10 is equivalent to $a = $a + 10;

• This does not apply to the NOT operator, since
it’s unary

25

Oct. 18, 2005

Operators — Error Control

• PHP support several different levels of errors

• Error reporting can be tweaked either through
PHP.INI settings or by calling error_reporting().

• Remember that the exam assumes the default
“recommended” INI file
 Warning and Notices are not reported!

• Error reporting can be controlled on a
statement-by-statement basis using the @
operator:
 @fopen ($fileName, “r”);
 This only works if the underlying functionality uses PHP’s

facilities to report its errors

26

Oct. 18, 2005

Operators — Inc/Dec and String

• Incrementing and decrementing operators are
special unary operators that increment or
decrement a numeric variable:
 Postfix: $a++
 Prefix: ++$a
 You cannot perform two unary operations on the same

variable at the same time— ++$a-- will throw an error

• The only string operation is the concatentaion
(.), which “glues” together two strings into a third
one
 “a” . ‘b’ == ‘ab’

27

Oct. 18, 2005

Operators — Comparison / Logical

• Comparison operators are used to compare
values:
 Equivalence: == !=

• Equivalence operators do not require either of their
operands to be a variable

 Identity: === !==
 Relation: <, <=, >=, >

• Logical operators are used to manipulate
Boolean values:
 AND (&&) — TRUE if both operands are TRUE
 OR (||) — TRUE if either operand is TRUE
 XOR (xor) — TRUE if either operand is TRUE, but not both
 NOT (!) — Reverses expression

28

Oct. 18, 2005

Operator Precedence

• The precedence of most operators follows rules
we are used to—but not all of them
 Example: “test ” . 1 + 10 . “ 123” == “1 123”

• There are two variants of logical operators
 The “letter” operators AND, OR differ from their

“symbol” equivalents &&, || in the fact that they have
lower precedence

29

Oct. 18, 2005

Conditionals — if-then-else

• Conditionals are used to direct the execution
flow of a script
 if (condition) {

 ... statements ...

} else {

 ... statements ...

}

• Alternative short form:
 $a = (cond) ? yesvalue : novalue;

30

Oct. 18, 2005

Conditionals — case/switch

• Case/switch statements allow you to verify a
single expression against multiple expressions:
 switch (expr) {

 case expr1 :
 ... statements ...
 break;

 case expr2:
 ... statements ...
 break;

 default:
 ... statements ...
 break;
}

31

Oct. 18, 2005

Iterators — While

• While loops are the simplest form of iterator; they
allow you to repeat a set of statements while a
condition evaluates to TRUE:
 while (expr) {

 ... statements ...

}

32

Oct. 18, 2005

Iterators — Do...while

• Do...while loops are equivalent to while loops,
but the condition is evaluated at the end of the
loop, instead of the beginning:
 do {

 ... statements ...

} while (expr);
 This means that the statement block is executed at

least once

33

Oct. 18, 2005

Iterators — For and Foreach

• While and do...while are the only indispensible
iterators in any language.

• For convenience, PHP includes for loops:
 for (initial; condition; incremental) {

 ... statements ...
}

• Foreach loops can be used to iterate through an
aggregate value:
 foreach ($array as $k => $v) {

 ... statements ...
}

 Important: $k and $v are assigned by value!
 Works on objects, too!

34

Oct. 18, 2005

Iterators: continuing/breaking

• Loops can be continued using the continue
construct:
 while ($a == 1) { if ($b == 2) continue; }

• Loops can be interrupted using the break
construct:
 while ($a == 1) { if ($b == 2) break; }

• Multiple nested loops can be continued/broken
at once:
 continue 2;
 Remember the semicolon at the end of the break or

continue statement!

35

Oct. 18, 2005

Functions

• Functions allow for code isolation and reuse
 function myfunc (&$arg1, $arg2 = 10)

{
 global $variable;

 ... statements ...
}

echo myfunc (10);

• Pay attention to variable scope!
• Functions can support variable parameters:

 func_num_args();
 fung_get_arg();

36

Oct. 18, 2005

OOP: Classes and Objects

• Classes define the structure of objects:
 class myClass {

 var $myVar;

 function myClass() { // constructor
 $this->myVar = 10;
 }

• Objects represent individual instances of a class:
 $a = new myClass;

$a->myVar = 11;

• Objects support dynamic methods and
properties:
 $obj->$var();

37

Oct. 18, 2005

OOP: Classes as Namespaces

• PHP does not support namespaces (this is true
also of PHP 5), but classes can simulate their
behaviour:
 class class encode {
 function base64($str)
 {
 return base64_encode($str);
 }
}

echo encode::base64("my string");

38

Oct. 18, 2005

OOP: Objects and References

• In PHP 4, objects receive no special treatment:
they are essentially arrays with embedded
functions
 This means that references to objects must be handled

with care.

• Passing/assigning an object is normally done by
value, not by reference, even when using new

39

Oct. 18, 2005

OOP: Objects and References

• The $this special variable cannot be passed by
reference, even if you use the & operator
 However, you can embed $this in a global array and

circumvent this problem (albeit in a horrible way):
• class obj {

 var $prop;
 function obj($arg)
 {
 global $obji; // import variable into local scope
 $obji[] = $this; // get a copy of current class
 $this->prop = $arg;
 }
}
$obj = new obj(123);
var_dump($obj->prop != $obji[0]->prop); // FALSE

40

Oct. 18, 2005

OOP: Inheritance

• Inheritance makes it possible to create classes
(“subclasses”) that are based on other classes
(“superclasses”):
 class base {
 function base()
 {
 }
}

class main extends base {
 function main()
 {
 parent::base();
 }
}

41

Oct. 18, 2005

OOP: Object Serialization

• Serialization is the process of reducing an
aggregate (array or object) to a scalar (string)

• Serialization is a mostly automatic process, but
for objects it is possible to exercise a certain
amount of control:
 __sleep()
 __wakeup()
 Useful for dynamically-generated properties, such as

database connections and file descriptors
 Classes must be declared before their instances are

unserialized

42

Oct. 18, 2005

Q&A Time

• What is the difference between print and echo?

• Under what circumstance is it impossible to
assign a default value to a parameter while
declaring a function?

• How does the identity operator === compare
two values?

43

Oct. 18, 2005

Answers

• What is the difference between print and echo?

• echo is a construct

• print is a function

44

Oct. 18, 2005

Answers

• Under what circumstance is it impossible to
assign a default value to a parameter while
declaring a function?

• Always, as long as the parameter is not being
passed by reference

45

Oct. 18, 2005

Answers

• How does the identity operator === compare
two values?

• It first compares the type, then the value

46

Oct. 18, 2005

Part II — Strings and Arrays

• What we’ll cover in this section:
 Comparisons
 Basic search and replace
 Regular Expressions
 String functions and formatting
 Accessing arrays
 Single- and multidimensional arrays
 Array iteration
 Array sorting
 Array functions and manipulation
 Serialization

47

Oct. 18, 2005

String Comparison

• String comparison is mostly trivial, but can
sometimes be tricky
 The equivalence operator should be used when you

know that you are comparing two strings—or when
you don’t care about cases like this:

• “123test” == 123 == TRUE!

 The identity operator should be otherwise used every
time you know that you want to compare two strings
without letting PHP juggle types

• PHP also provides function-based comparison:
 strcmp()
 strcasecmp()
 strncmp() and strncasecmp()

48

Oct. 18, 2005

Basic String Searching

• strstr() (aliased into strchr()) determines whether
a substring exists within a string:
 strstr (“PHP is a language”, “PHP”) == true
 stristr() provides a case-insensitive search

• strpos() will return the location of a substring
inside a string, optionally starting from a given
position:
 strpos ($haystack, $needle, $pos)
 Beware of zero return values!
 There is no stripos() in PHP 4!

• Reverse search is done with strrchr() / strrpos()

49

Oct. 18, 2005

Counting Strings

• The length of a string is determined with strlen()
 Do not use count()!

• You can count words inside a string using
str_word_count():
 str_word_count ($str, $n);
 $n == 1 — Returns array with words in order
 $n == 2 — Returns array with words and positions

• substr_count() can be used to count the number
of occurrences of a given substring:
 substr_count (“phpphpPHP”, “php”) == 2

50

Oct. 18, 2005

Formatting Strings

• Most of the time, strings can be formatted using
a combination of concatenations

• In some cases, however, it is necessary to use
special functions of the printf() family
 printf() — outputs formatted strings to STDOUT

• printf (“%d”, 10);

 sprintf() — returns the formatted string
• $a = sprintf (“%d”, 10);

 fprintf() — outputs formatted strings to a file descriptor
• fprintf ($f, “%d”, 10);

 vprintf(), vsprintf() — take input from array
• vprintf (“%d”, array (10));
• $a = vsprintf (“%d”, array (10));

51

Oct. 18, 2005

Formatting Strings

• % - a literal percent character.

• b – integer presented as a binary number

• c – integer (ASCII value)
• d – integer (signed decimal number)

• e – number in scientific notation (Ex. 1.2e+2)

• u – integer (unsigned decimal number)

• f – float as a floating-point number.

• o – integer (octal number).
• s – string

• x – hexadecimal number (lowercase letters).

• X – hexadecimal number (uppercase letters).

• 52

Oct. 18, 2005

Accessing Strings as Arrays

• You can access individual characters of a string
as if it were an array
 $s = “12345”;

echo $s[1]; // Outputs 2
echo $s{1}; // Outputs 2

 This works for both reading and writing
 Remember that you cannot use count() to determine

the number of characters in a string!

53

Oct. 18, 2005

Extracting and Replacing

• Substrings can be extracted using the substr()
function:
 echo substr (“Marco”, 2, 1); // Outputs r
 echo substr (“Marco”, -1); // Outputs o
 echo substr (“Marco”, 1, -1); // Outputs arc

• Substrings can be replaced using substr_replace
():
 substr_replace (‘Marco’, ‘acr’, 1, -1) == “Macro”

• The sscanf() function can be used to extract
tokens formatted à la printf() from a string:
 sscanf(“ftp://127.0.0.1”, "%3c://%d.%d.%d.%d:%d");
 Returns array (‘ftp’, ‘127’, ‘0’, ‘0’, ‘1’);

54

Oct. 18, 2005

Multiple Replacements

• str_replace() replaces instances of a substring
with another:
 str_replace (“.net”, “arch”, “php.net”) == “phparch”

• You can perform multiple replacements by
passing arrays to str_replace():
 str_replace(array('apples', 'applesauce', 'apple'),

 array('oranges', 'orange-juice', 'cookie'),
 “apple apples applesauce”)

 Returns “cookie oranges orangesauce”

55

Oct. 18, 2005

PCRE — Perl Regular Expressions

• Perl Regular Expressions (PCRE) make it possible
to search (and replace) variable patterns inside
a string

• PCRE is usually fast and simple to understand,
but it can also be complicated or slow (or both)

• Regular expressions are matched using the
preg_match() function:
 preg_match ($pcre, $search, &$results)
 preg_match_all ($pcre, $search, &$results)

• Search-and-replace is performed using
preg_replace():
 preg_replace ($pcre, $replace, $search)

56

Oct. 18, 2005

PCRE — Meta Characters

• Meta characters are used inside a regex to
represents a series of characters:
 \d — digits 0–9
 \D — not a digit
 \w — alphanumeric character or underscor
 \W — opposite of \w
 \s — any whitespace (space, tab, newline)
 \S — any non-whitespace character
 . — any character except for a newline

• Meta characters only match one character at a time (unless
an operator is used to change this behaviour)

57

Oct. 18, 2005

PCRE — Operators / Expressions

• PCRE operators indicate repetition:
 ? — 0 or 1 time
 * — 0 or more times
 + — 1 or more times
 {,n} — at more n times
 {m,} — m or more times
 {m,n} — at least m and no more than n times

• Parentheses are used to group patterns
 (abc)+ — means “abc” one more times

• Square brackets indicate character classes
 [a-z] means “any character between a and z
 The caret negates a class: [^a-z] is the opposite of the

expression above
58

Oct. 18, 2005

PCRE — An example

• Here’s an example of a PCRE:
 $string = ‘123 abc’;

preg_match (‘/\d+\s\[a-z]+/’, $string);

preg_match (‘/\w\s\s/’, $string);

preg_match (‘\d{3}\s[a-z]{3}’/, $string);

59

Oct. 18, 2005

PCRE — Another Example

• Here’s an example of how to retrieve data from
a regex:
 $email = ‘marcot@tabini.ca”;

preg_match (‘/(\w+)@(\w+)\.(\w+)/’);

 Will return array (‘marcot@tabini.ca’, ‘marcot’,
 ‘tabini’, ‘ca’)

60

Oct. 18, 2005

String Splitting and Tokenization

• The explode() function can be used to break up
a string into an array using a common delimiter:
 explode (‘.’, ‘www.phparch.com’);
 Will return array (‘www’, ‘phparch’, ‘com’);

• The preg_split() function does the same thing,
but using a regex instead of a fixed delimiter:
 explode (‘[@.]’, ‘marcot@tabini’ca’);
 Will return array (‘marcot’, ‘tabini’, ‘ca’);

61

Oct. 18, 2005

Word Wrapping

• The wordwrap() function can be used to break a
string using a specific delimiter at a given length
 wordwrap ($string, $length, $delimiter, $break);

• If the $break parameter evaluates to TRUE, the
break occurs at the specified position, even if it
occurs in the middle of a word

62

Oct. 18, 2005

Arrays

• Arrays are created in a number of ways:
 Explicitly by calling the array() function

• array (1, 2, 3, 4);

• array (1 => 1, 2, 3, 5 => “test”);
• array (“2” => 10, “a” => 100, 30);

 By initializing a variable using the array operator:
• $x[] = 10;

• $x[-1] = 10;
• $x[‘a’] = 10;

• The count() function is used to determine the
number of elements in an array
 Executing count() against any other data type

(including objects), it will return 1 (or 0 for NULL)

63

Oct. 18, 2005

Array Contents

• Array can contain any data type supported by
PHP, including objects and other arrays

• Data can be accessed using the array operator
 $x = $array[10];

• Multiple elements can be extracted using the list
function:
 $array = (1, 2, 3);

list ($v1, $v2, $v3) = $array

64

Oct. 18, 2005

Array Iteration

• It’s possible to iterate through arrays in a number
of ways. Typically:

• for ($i = 0; $i < count ($array); $i++) // WRONG!
 $cnt = count ($array)

for ($i = 0; $i < $cnt; $i++)
 Storing the invariant array count in a separate variable

improves performance

• foreach ($array as $k => $v)
 $k and $v are assigned by value—therefore, changing

them won’t affect the values in the array
 However, you can change the array directly using $k:
 $array[$k] = $newValue;

65

Oct. 18, 2005

Array Iteration

• You can also iterate through an array using the
internal array pointer:
 $a = array(1,2,3);

while (list($k, $v) = each($a)) {
 echo "{$k} => {$v} ";
 if ($k % 2) { // add entry if key is odd
 $a[] = $k + $v;
 }
} // 0 => 1 1 => 2 2 => 3 3 => 3 4 => 6

 With this approach, operations take place directly on
the array

• Finally, you can use array_callback() to iterate
through an array using a user-supplied function

66

Oct. 18, 2005

Array Keys and Values

• You can check if an element exists in one of two
ways:
 array_key_exists ($array, $key); // Better, but slower
 isset ($array[$key]); // Faster, but has pitfalls

• $a[1] = null;
echo isset ($a[1]);

• You can also check whether a value exists:
 in_array ($value, $array)

• You can extract all the keys and values from an
array using specialized functions:
 array_keys ($array);
 array_value ($array);

67

Oct. 18, 2005

Sorting Arrays

• The sort() and rsort() functions sort an array in-
place
 sort ($array); — rsort ($array)
 Key association is lost—you can use asort() and arsort()

to maintain it

• A more “natural” sorting can also be performed:
 natsort ($array);
 natcasesort ($array);

• Sorting by key is also a possibility:
 ksort();
 krsort();

68

Oct. 18, 2005

Array Functions

• Changing key case:
 array_change_key_case ($a, CASE_LOWER)
 array_change_key_case ($a, CASE_UPPER)

• Randomizing the contents of an array:
 shuffle($array)

• Extracting a random value:
 array_rand ($array, $qty);

69

Oct. 18, 2005

Merge, Diff and Sum

• Merging arrays:
 array_merge ($a, $b[, ...]);
 Later values with the same key overwrite earlier ones

• Diff’ing arrays:
 array_diff ($a, $b[, ...]);
 Returns keys that are not common to all the arrays
 Key association is lost—you can use array_diff_assoc()

to maintain it

• Intersecting:
 array_intersect ($a, $b[, ...]);

• Calculating arithmetic sum:
 array_sum ($array);

70

Oct. 18, 2005

Unique Array Values

• The array_unique() function retrieves all the
unique array values
 array_unique ($array)
 Requires traversal of entire array and therefore

hampers performance

71

Oct. 18, 2005

Arrays as stacks or queue

• The array_push() function pushes a new value at
the end of an array
 array_push ($array, $value)
 Essentially equivalent to $array[] = $value;

• The array_pop() retrieves the last value from an
array:
 $x = array_pop ($array);

• This allows you to use arrays as if they were
stacks (LIFO)

• You can also pull a value from the top of the
array, thus implementing a queue (FIFO)
 $x = array_shift ($array)

72

Oct. 18, 2005

Serializing Arrays

• Like with objects, you can serialize arrays so that
they can be conveniently stored outside your
script:
 $s = serialize ($array);

 $array = unserialize ($s);

 Unserialization will preserve references inside an array,
sometimes with odd results

73

Oct. 18, 2005

Q&A Time

• Given a comma-separated list of values in a
string, which function can create an array of
each individual value with a single call?

• The ________________ function can be used to
ensure that a string always reaches a specific
minimum length.

• Which function would you use to rearrange the
contents of the array (‘a’, ‘b’, ‘c’, ‘d’) so that they
are reversed?

74

Oct. 18, 2005

Answers

• Given a comma-separated list of values in a
string, which function can create an array of
each individual value with a single call?

• explode()

• preg_split() would have also been acceptable

75

Oct. 18, 2005

Answers

• The ________________ function can be used to
ensure that a string always reaches a specific
minimum length.

• str_pad()

76

Oct. 18, 2005

Answers

• Which function would you use to rearrange the
contents of the array (‘a’, ‘b’, ‘c’, ‘d’) so that they
are reversed?

• rsort()

• array_reverse()

77

Oct. 18, 2005

PART III — User Input / Time & Dates

• What we’ll cover in this section:
 HTML form management
 File uploads
 Cookies
 Magic Quotes
 Sessions
 Times and dates in PHP
 Formatting date values
 Locale-dependent date formatting
 Date validation

78

Oct. 18, 2005

HTML Form Management

• HTML forms are submitted by the browser using
either GET or POST
 GET transaction data is sent as part of the query string
 POST data is sent as part of the HTTP transaction itself
 POST is often considered “safer” than GET—WRONG!

• POST data is made available as part of the
$_POST superglobal array

• GET data is made available as part of the $_GET
superglobal array
 Both are “superglobal”—in-context everywhere in your

scripts
 If duplicates are present, only the ones sent last end up

in the appropriate superglobal
79

Oct. 18, 2005

HTML Form Management

• Element arrays can also be sending by
postfixing the element names with []
 These are transformed into arrays by PHP
 The brackets are discarded
 A very common (and pernicious) type of security

attack

• You can also specify your own keys by placing
them inside the brackets:
 <input type=”hidden” name=”a[ts]” value=”1”>
 Will result in $a[‘ts’] = 1 being inserted in the

appropriate superglobal

80

Oct. 18, 2005

Uploading Files

• Files are uploaded through a special type of
HTML form:
 <form enctype="multipart/form-data" action="/

upload.php" method="post">
<input type="my_file" type="file" />
<input type="hidden" name="MAX_FILE_SIZE"
value="100000" />
</form>

• An arbitrary number of files can be uploaded at
the same time

81

Oct. 18, 2005

Uploading Files

• Once uploaded, file information is available
through the $_FILES superglobal array
 [my_file] => Array
 (
 [name] => php.gif
 [type] => image/gif
 [tmp_name] => /tmp/phpMJLN2g
 [error] => 0
 [size] => 4644
)

• Uploaded file can be moved using
move_uploaded_file()
 You can also determine whether a file has been

uploaded using is_uploaded_file()

82

Oct. 18, 2005

Uploading Files

• File uploads are controlled by several PHP.INI
settings:
 file_uploads — whether or not uploads are enabled
 upload_tmp_dir — where temporary uploaded files are

stored
 upload_max_filesize — the maximum size of each

uploaded file
 post_max_size — the maximum size of a POST

transaction
 max_input_time — the maximum time allowed to

process a form

83

Oct. 18, 2005

Cookies

• Cookies are small text strings that are stored
client-side

• Cookies are sent to the client as part of the HTTP
response, and back as part of the HTTP headers

• Cookies are notoriously unreliable:
 Some browsers are set not to accept them
 Some users do not accept them
 Incorrect date/time configuration on the client’s end

can lead to cookies expiring before they are set

84

Oct. 18, 2005

Cookies

• To set a cookie:
 setcookie ($name, $value, $expires, $path, $domain);
 setcookie ($name, $value); // sets a session cookie

• Cookies are then available in the $_COOKIE
superglobal array:
 $_COOKIE[‘mycookie’]
 $_COOKIE is populated at the beginning of the script.

Therefore, it does not contain cookies you set during
the script itself (unless you update it manually)

• You cannot “delete” a cookie
 You can set it to Null or an empty string

• Remember not to use isset()!

 You can expire it explicitly
85

Oct. 18, 2005

$_REQUEST

• $_REQUEST is a superglobal populated from
other superglobals
 You have no control over how data ends up in it
 The variables_order PHP.INI setting controls how data is

loaded into it, usually Get -> Post -> Cookie

• Generally speaking, you’re better off not using it,
as it is a virtual security black hole.

86

Oct. 18, 2005

Magic Quotes

• By default, PHP will escape any “special”
characters found inside the user’s input

• You should not rely on this setting being on (as
most sysadmins turn it off anyway)

• You also (and most definitely) should not rely on
it performing proper input filtering for you

• In fact, supply your own escaping and “undo”
magic quotes if they are enabled!

87

Oct. 18, 2005

Sessions

• Sessions are mechanisms that make it possible
to create a per-visitor storage mechanism on
your site

• Sessions we born—and remain—a hack, so you
can only depend on them up to a certain point

• On the client side, sessions are just unique IDs
passed back and forth between client and
server

• On the server side, they can contain arbitrary
informaiton

88

Oct. 18, 2005

Sessions

• In order to write to a session, you must explicitly
start it
 session_start()
 This is not necessary if session.auto_start is on in your

PHP.INI fil

• You can then write directly into the $_SESSION
array, and the elements you create will be
transparently saved into the session storage
mechanism
 $_SESSION[‘test’] = $myValue

89

Oct. 18, 2005

Sessions

• By default, session data is stored in files;
however, you can specify a number of built-in
filters

• You can also define your own session handlers
in “userland”

90

Oct. 18, 2005

Date Manipulation in PHP

• For the most part, PHP handles dates in the UNIX
timestamp format
 Timestamps indicate the number of seconds from the

UNIX “epoch”, January 1st, 1970
 Not all platforms support negative timestamps (e.g.:

Windows prior to PHP 5.1)

• Timestamps are very handy because they are
just large intergers
 This makes it easy to manipulate them, but not

necessarily to represent them
 They are also handy for time calculations
 For more precision, you can use microtime()

91

Oct. 18, 2005

Date Manipulation in PHP

• Another way of representing dates is through
date arrays using getdate()
 A date array contains separate elements for each

component of a date
 [seconds] => 15 // 0 - 59

[minutes] => 15 // 0 - 59
[hours] => 9 // 0 - 23
[mday] => 4 // 1 - 31
[wday] => 3 // 0 - 6
[mon] => 8 // 1 - 12
[year] => 2004 // 1970 - 2032+
[yday] => 216 // 0 - 366
[weekday] => Wednesday // Monday - Sunday
[month] => August // January - December
[0] => 1091625315 // UNIX time stamp

92

Oct. 18, 2005

Time and Local Time

• The time() function returns the timestamp for the
current time
 time() (no parameters needed)

• Localtime performs similarly, but returns an array
 [0] => 59 // seconds 0 - 59

[1] => 19 // minutes 0 - 59
[2] => 9 // hour 0 - 23
[3] => 4 // day of month 1 - 31
[4] => 7 // month of the year, starting with 0 for January
[5] => 104 // Years since 1900
[6] => 3 // Day of the week, starting with 0 for Sunday
[7] => 216 // Day of the year
[8] => 1 // Is daylight savings time in effect

93

Oct. 18, 2005

More Local Time

• Localtime() can also return an associative array:
 var_dump (localtime(time, 1));
 Outputs:

• [tm_sec] => 1 // seconds 0 - 59
[tm_min] => 23 // minutes 0 - 59
[tm_hour] => 9 // hour 0 - 23
[tm_mday] => 4 // day of month 1 - 31
[tm_mon] => 6 // month of the year, 0 for January
[tm_year] => 104 // Years since 1900
[tm_wday] => 0 // Day of the week, 0 for Sunday
[tm_yday] => 185 // Day of the year
[tm_isdst] => 1 // Is daylight savings time in effect

94

Oct. 18, 2005

Formatting Dates

• Timestamps are great for calculations, but not
for human redability

• The date() function can be used to format a
date according to an arbitrary set of rules:
 date (“Y-m-d H:i:s\n”);
 date (‘\d\a\t\e: Y-m-d’);

• strftime() provides a printf-like, locale-
dependent formatting mechanism for date/time
values:
 strftime (“%A”, time()); // Prints weekday
 You need to use setlocale (LC_TIME, $timezone) in

order to set the timezone to a particular value

95

Oct. 18, 2005

Creating Dates

• Dates can be created using mktime():
 mktime (hour, min, sec, mon, day, year, daylight)

• Several date-related functions have GMT-
equivalents:
 gmmktime()
 gmdate()
 gmstrftime()

• It is also possible to change the timezone—just
change the TZ environment variable:
 putenv (“TZ=Canada/Toronto”);
 This will be equivalent to EST or EDT

96

Oct. 18, 2005

Interpreting Date Input

• It is also possible to create a timestamp from a
formatted string date using strtotime():
 strotime(“now”);
 strtotime(“+1 week”);
 strtotime(“November 28, 2005”);
 strtotime(“Next Monday”);

• You can also check whether a date is valid by
using the checkdate() function:
 checkdate (month, date, year)
 Automatically accounts for leap years
 Not foolproof—incapable for example, to account for

the Gregorian gap

97

Oct. 18, 2005

Q&A Time

• How would you make a cookie expire in exactly
one hour (assuming that the client machine on
which the browser is set to the correct time and
time zone—and that it resides in a time zone
different from your server’s)?

• What is the simplest way of transforming the
output of microtime() into a single numeric
value?

• If no expiration time is explicitly set for a cookie,
what happens to it?

98

Oct. 18, 2005

Answers

• How would you make a cookie expire in exactly
one hour (assuming that the client machine on
which the browser is set to the correct time and
time zone—and that it resides in a time zone
different from your server’s)?

• Pass time() + 3600 as the expiry

99

Oct. 18, 2005

Answers

• What is the simplest way of transforming the
output of microtime() into a single numeric
value?

• array_sum (explode (‘ ‘, microtime()));

100

Oct. 18, 2005

Answers

• If no expiration time is explicitly set for a cookie,
what happens to it?

• It expires at the end of the browser’s session

101

Oct. 18, 2005

PART IV: Files and E-mail

• What we’ll cover in this section:
 Opening and closing files
 Reading from and writing to files
 Getting information about a file
 Copying, renaming, deleting files
 File permissions
 File locks
 Sending e-mail
 MIME
 HTML E-mails
 Multipart E-mails

102

Oct. 18, 2005

Files — Opening and Closing

• Files are open using the fopen() function:
 fopen ($filename, $mode)
 returns a file resource (not a pointer!)

• The $mode parameter indicates how the file
should be open:
 r — read only
 r+ — read/write
 w — write only and create the file
 w+ — read/write and create the file
 a — write only and position at end of file
 a+ — read/write and position at end of tile
 x — write only, fail if file already exists

103

Oct. 18, 2005

Files — Opening and Closing

• If your PHP has been compiled with URL
wrappers support, fopen() works both on local
and “remote” files via any of the supported
protocols:
 fopen (“http://www.phparch.com”, “r”);

• Files can be closed using fclose()
 This is not necessary, because PHP closes all open

handles at the end of script
 However, it’s a good idea in some cases

104

Oct. 18, 2005

Files — Reading & Writing

• Data is read from a file through a number of
functions. The most common one is fread():
 $data = fread ($file, $qty);
 Returns the maximum data available, up to $qty bytes

• The fgets() function reads data one line at a
time:
 $data = fgets ($file, $maxLen);
 Returns data up to (and including) the next newline

character or $maxLen - 1;
 May or may not work depending on how the file has

been encoded
• auto_detect_line_endings PHP.INI setting

105

Oct. 18, 2005

Files — Reading and Writing

• Writing works in a similar way:
 fwrite ($file, $data)
 Writes as much of $data as possible, returns amount

written

• You can also use fputs(), which is effectively an
alias for fwrite()

106

Oct. 18, 2005

Files — File Position

• The file position is updated as your read from or
write to a file
 ftell ($file) — Returns the current offset (in bytes) from

the beginning of the file

• You can manually alter the current position
using fseek():
 fseek ($file, $position, $from)
 $from can be one of three constants:

• SEEK_SET (beginning of file)
• SEEK_CUR (current offset)
• SEEK_END (end of file — $from should be < 0)

107

Oct. 18, 2005

Files — File Information

• The fstat() function returns several pieces of
information about a file:
 var_dump (fstat ($file))

• [dev] => 5633 // device
 [ino] => 1059816 // inode
 [mode] => 33188 // permissions
 [nlink] => 1 // number of hard links
 [uid] => 1000 // user id of owner
 [gid] => 102 // group id of owner
 [rdev] => -1 // device type
 [size] => 106 // size of file
 [atime] => 1092665414 // time of last access
 [mtime] => 1092665412 // time of last modification
 [ctime] => 1092665412 // time of last change
 [blksize] => -1 // blocksize for filesystem I/O
 [blocks] => -1 // number of blocks allocated

108

Oct. 18, 2005

Files — File Information

• The stat() function is a version of fstat() that does
not require you to open the file
 var_dump (stat ($fileName))

• Several functions provide only portions of the
info returned by stat() and fstat()
 file_exists ($fileName)
 fileatime ($fileName) — Last access time
 fileowner ($fileName)
 filegroup ($fileName)

• The results of these functions are cached
 This can lead to confusing results if you make changes

to a file in the same after you’ve run one of these
convenience functions

109

Oct. 18, 2005

Files — File Information

• File permissions can be determined using either
the bitmask from fstat() or some more
convenience functions
 is_readable ($fileName);
 is_writable ($fileName);
 is_executable ($fileName);
 is_uploaded_file ($fileName);

• They can also be changed:
 chmod ($fileName, 0777);
 Note use of octal number

• The filesize() function returns the size of a file
 echo filesize ($fileName)

110

Oct. 18, 2005

Copying, Renaming & Deleting

• Files can be copied using the copy() function:
 copy ($sourcePath, $destPath)

• Renaming is done through rename():
 rename ($sourcePath, $destPath);
 Guaranteed to be atomic across the same partition

• Files are deleted using unlink():
 unlink ($fileName);
 NOT delete()!

• Files can also be “touched”:
 touch ($fileName);

• All these functions report success/failure via a
Boolean value

111

Oct. 18, 2005

Directories

• Directories cannot be removed using unlink:
 $success = rmdir ($dirName);
 The directory must be empty
 This means that you must write your own code to

empty the directory and any subdirectories

112

Oct. 18, 2005

File Locking

• File locking ensures ordered access to a file

• PHP’s locking module is collaborative
 Every application that accesses the file must use it

• Locks can be shared or exclusive
 $lock = ($file, $lockType, &$wouldBlock);
 $lockType: LOCK_SH, LOCK_EX
 To release a lock: LOCK_UN
 To prevent blocking, OR with LOCK_NB

• Several limitations:
 Doesn’t work on most networked filesystems, or on FAT

(Win98)
 Sometimes implemented per-process

113

Oct. 18, 2005

More File Fun

• Some useful file functions

• file():
 Reads an entire file in memory, splits it along newlines

• readfile():
 Reads an entire file, outputs it

• fpassthru():
 Same as readfile(), but works on file pointer and

supports partial output

• file_get_contents():
 Reads entire file in memory
 Remember that file_put_contents() is a PHP 5-only

function!

114

Oct. 18, 2005

PHP and E-mail

• PHP supports sending of e-mail through the
mail() function
 Contrary to popular belief, it’s not always available
 Relies on sendmail in UNIX, implements its own

wrappers in Windows and Netware
 Built-in wrappers do not support authentication
 The from address is set automatically under Linux

(php_user@serverdomain), must be set in PHP.ini under
Windows

115

Oct. 18, 2005

E-mail — The mail() Function

• The mail() function accepts five parameters:
 mail ($to, $subject, $body, $headers, $extra)

• mail() provides a raw interface to sending mail
 No support for attachments
 No support for MIME
 No support for HTML mail

• Extra headers can be set, including overriding
the default From:
 On UNIX machines, this may require setting -f in $extra
 This may not work if PHP user is not “trusted” by

sendmail

116

Oct. 18, 2005

E-mail — MIME

• E-mail only supports 7-bit ASCII
 Good for anglophones, not so good for the rest of the

world
 MIME provides support for sending arbitrary data over

e-mail
 MIME is supported by most MUAs, although often the

target of spam filters

• MIME headers also define the type of data that is
being sent as part of an e-mail:
 For example, HTML:

• "MIME-Version: 1.0\r\n" .
 "Content-Type: text/html; charset=\"iso-8859-1\"\r\n" .
 "Content-Transfer-Encoding: 7bit\r\n"

117

Oct. 18, 2005

E-mail — MIME and Multipart

• Multipart e-mails make it possible to send an e-
mail that contains more than one “part”
 "MIME-Version: 1.0\r\n" .

"Content-Type: multipart/alternative;\r\n" .
" boundary=\"{$boundary}\"\r\n";

 Examples:
• HTML and Text bodies (plain-text should go first)
• Attachments

• Most clients support multipart—but for those who
don’t, you always provide a plain-text message
at the beginning
 “If you are reading this, your client is too old!”

118

Oct. 18, 2005

E-mail — MIME and Multipart

• The different parts are separated by a unique
boundary
 $message .= "--" . $boundary . "\r\n" .

"Content-Type: text/plain; charset=us-ascii\r\n" .
“Content-Transfer-Encoding: 7bit\r\n\r\n" .
"Plain text" .
"\r\n\r\n--" . $boundary . "--\r\n";

 Note the two dashes before each boundary, and after
the last boundary

• Binary attachments must be encoded:
 "Content-Transfer-Encoding: base64\r\n" .

‘Content-disposition: attachment; file="l.gif"\r\n\r\n"
 base64_encode ($file);

119

Oct. 18, 2005

E-mail — Getting a handle

• It’s impossible to know whether an e-mail was
successfully sent
 mail() only returns a success/failure Boolean for its end

of the deal
 E-mail can get lost at pretty much any point in the

tranmission process
 The mail protocol does not have a thoroughly-

respected feedback mechanism

120

Oct. 18, 2005

Q&A Time

• Which function(s) retrieve the entire contents of
a file in such a way that it can be used as part of
an expression?

• What does the built-in delete function do?

• Which MIME content type would be used to send
an e-mail that contains HTML, rich text, and plain
text versions of the same message so that the e-
mail client will choose the most appropriate
version?

121

Oct. 18, 2005

Answers

• Which function(s) retrieve the entire contents of
a file in such a way that it can be used as part of
an expression?

• file_get_contents()

• file()

122

Oct. 18, 2005

Answers

• What does the built-in delete function do?

• It doesn’t exist!

• Use unlink() instead

123

Oct. 18, 2005

Answers

• Which MIME content type would be used to send
an e-mail that contains HTML, rich text, and plain
text versions of the same message so that the e-
mail client will choose the most appropriate
version?

• multipart/alternative
 segment which contains sub-segments representing

multiple versions of the same content

124

Oct. 18, 2005

PART V: Databases and Networks

• What we’ll cover in this section:
 Databasics
 Indices and keys
 Table manipulation
 Joins
 Aggregates
 Transactions
 File wrappers
 Streams

125

Oct. 18, 2005

Databasics

• The exam covers databases at an abstract level
 No specific implementation
 SQL-92 standards only

• Only the basics of database design and
programming are actually required
 Table creation/population/manipulation
 Data extraction
 Reference integrity
 Joins / Grouping / Aggregates

126

Oct. 18, 2005

Databasics

• Relational databases
 Called because the relationship among different

entities is its foundation

• Schemas/databases
• Tables

• Rows
 Data types

• Int

• Float
• Char/varchar

• BlOBs

127

Oct. 18, 2005

Indices

• Indices organize data
 Useful to enforce integrity
 Essential to performance

• Indices can be created on one or more columns
 More rows == bigger index
 Columns that are part of indices are called keys

• Indices can be of two types: unique or not
unique
 Unique indices make it possible to ensure that no two

combination of the same keys exist in the table
 Non-unique indices simply speed up the retrieval of

information

128

Oct. 18, 2005

Creating Schemas and Tables

• Schemas are created with CREATE DATABASE:
 CREATE DATABASE database_name

• Tables are created with CREATE TABLE:
 CREATE TABLE table_name (

 column1 column1_type,
 ...)

• Table names are unique
 This is true on a per-schema basis

• Each table must contain at least one column
 Most DBMSs implement some sort of limits to the size of

a row, but that is not part of the standard

129

Oct. 18, 2005

Creating Indices

• Indices are created using CREATE INDEX:
 CREATE [UNIQUE] INDEX index_name (

 column1,
 ...)

• Index names must be unique
 On a per-schema basis

• Primary keys are special unique indices that
indicate the “primary” method of accessing a
table
 There can only be one primary key per table
 Generally, the primary key indicates the way the data

is physically sorted in storage

130

Oct. 18, 2005

Creating Good Indices

• A good index provides maximum performance
at minimum cost
 Create only indices that reflect database usage
 Implement the minimum number of columns per index
 Create as few indices as possible

• Many DBMSs can only use one index per query
 Make sure you understand how your DBMS uses indices
 Analyze, analyze, analyze
 Continue analyzing once you’re done!

131

Oct. 18, 2005

Foreign Keys

• A foreign key establishes a relationship between
two tables:
 CREATE TABLE A (ID INT NOT NULL PRIMARY KEY)
 CREATE TABLE B (A_ID INT NOT NULL REFERENCES A(ID))

• Foreign keys enforce referential integrity
 They ensure that you cannot add rows to table B with

values for A_ID that do not exist in table A
 It also ensures that you cannot delete from table A if

there are TABLE B rows that still reference it

• Some DBMSs do not support foreign keys
 Notably, MySQL until version 5.0

132

Oct. 18, 2005

Inserting, Updating and Deleting

• Rows are inserted in a table using the INSERT
INTO statement:
 INSERT INTO TABLE A (ID) VALUES (123)
 INSERT INTO TABLE A VALUES (123)

• Updates are performed using UPDATE:
 UPDATE A SET ID = 124

• Deletions are performed using DELETE:
 DELETE FROM A

• Both additions and deletion can be limited by a
WHERE clause:
 UPDATE A SET ID = 124 WHERE ID = 123

133

Oct. 18, 2005

Retrieving Data

• Data is retrieved using the SELECT FROM
statement:
 SELECT * FROM A
 SELECT ID FROM A

• SELECT statements can also be limited by a
WHERE clause
 SELECT * FROM A WHERE ID = 123
 SELECT ID FROM A WHERE ID = 123
 Where clauses are what makes indices so important

134

Oct. 18, 2005

Joins

• A join makes it possible to... join together the
results from two tables:
 SELECT * FROM A INNER JOIN B ON A.ID = B.A_ID

• Inner Joins require that both tables return rows
for a particular set of keys

• Outer Joins require that either table return rows
for a particular set of keys
 SELECT * FROM A LEFT JOIN B

ON A.ID = B.A_ID
 SELECT A.ID, B.* FROM A RIGHT JOIN B

ON A.ID = B.A_ID

135

Oct. 18, 2005

Joins

• Joins don’t always work the way you expect
them to
 SELECT * FROM A INNER JOIN B

WHERE A.ID <> B.A_ID
 This won’t return a list of the rows that A and B do not

have in common
 It will return a list of all the rows that each row of A

does not have in common with B!

• Joins also rely on indices

• Joins can be stacked, and they are executed
from left to right

136

Oct. 18, 2005

Grouping and Aggregates

• The GROUP BY clause can be used to group
return sets according to one or more columns:
 SELECT A_ID FROM B GROUP BY A_ID

• Grouped result sets can then be used with
aggregates to perform statistical analysis on
data:
 SELECT A_ID, COUNT(A_ID) FROM B GROUP BY A_ID

• When using GROUP BY, only aggregates and
columns that appear in the GROUP BY clause
can be extracted
 This is the standard, but it’s not always respect (notably

by MySQL)

137

Oct. 18, 2005

Aggregates

• Sum of all rows
 SUM(column_name)

• Count of rows returned
 COUNT(column_name)
 COUNT(*)

• Arithmetic average:
 AVG(column_name)

• Maximum / minimum
 MAX (column_name)
 MIN (column_name)

• Not all aggregates can be sped up by proper
indexing

138

Oct. 18, 2005

Sorting

• Result sets can be sorted using the ORDER BY
clause
 SELECT * FROM A ORDER BY ID

• This is superfluous — ID is the primary key!

 SELECT * FROM A ORDER BY ID DESC
 SELECT * FROM B ORDER BY A_ID DESC, ID

• Sorting performance is affected by indexing

139

Oct. 18, 2005

Transactions

• Transaction create atomic sets of operations that
can be committed or rolled back without any
chaange to the underlying data
 BEGIN TRANSACTION

DELETE FROM A
DELETE FROM B
ROLLBACK TRANSACTION

 BEGIN TRANSACTION
UPDATE A SET ID = 124 WHERE ID = 123
UPDATE B SET A_ID = 124 WHERE ID = 123
COMMIT TRANSACTION

• Not all DBMSs support transactions
 For example, MySQL only supports them with InnoDB

140

Oct. 18, 2005

SQL and Dates

• Most DBMSs can handle dates much better than
PHP
 Extended range
 Higher resolution

• Therefore, you should keep all date operations
within your DBMS for as long as possible

141

Oct. 18, 2005

File Wrappers

• File wrappers extend PHP’s file handling
 use fopen(), fread() and all other file functions with

something other than files
 For example, access HTTP, FTP, ZLIB and so on

• Built-in wrappers, or your own
 Simply define your own wrapper class:

• class wrap {
function stream_open($path, $mode, $options, &$opened_path) {}
function stream_read($count) {}
function stream_write($data) {}
function stream_tell() {}
function stream_eof() {}
function stream_seek($offset, $whence) {}
}
stream_wrapper_register("wrap", "wrap"); // register wrapper
$fp = fopen("wrap://some_file", "r+"); // open file via new wrapper

142

Oct. 18, 2005

File Wrappers

• Not all file wrappers support all operations
 For example, HTTP is read-only

• Remote file access may be turned off
 Use the allow_furl_open PHP.INI directive

• Some wrappers are write-only
 For example: php://stdout and php://stderr

• Some wrappers do not support appending
 For example ftp://

• Only the “file://” wrapper allows simultaneous
read and write operations

143

Oct. 18, 2005

File Wrappers

• File wrappers support information retrieval via
stat() and fstat()
 This is only implemented for file://
 Remember, however, that SMB and NFS files are “local”

as far as the operating system is concerned

• Deleting and renaming is also supported
 Renaming only supported for local file (but see above)
 Both require write access

• You can also access and manipulate directories
 Supported only for local files

• Remember to close unused wrapper instance
 Not necessary, but often a good idea

144

Oct. 18, 2005

Streams

• Streams represent access to network services
 File wrapper
 One or two pipelines
 Context
 Metadata

• Pipelines
 Established to allow for the actual streaming of data
 Can be one only (read or write) or two (read and

write)

• Context
 Provides access to advanced options

• For example, under HTTP you can set additional headers

145

Oct. 18, 2005

Streams

• Metadata
 Contains “out-of-band” information provided by the

stream
• print_r(stream_get_meta_data(fopen("http://www.php.net", "r")));

/* Array (
 [wrapper_data] => Array (
 [0] => HTTP/1.1 200 OK
 [1] => Date: Wed, 25 Aug 2004 22:19:57 GMT
 [2] => Server: Apache/1.3.26 (Unix) mod_gzip/1.3.26.1a PHP/4.3.3-dev
 [3] => X-Powered-By: PHP/4.3.3-dev
 [4] => Last-Modified: Wed, 25 Aug 2004 21:12:17 GMT
 [5] => Content-language: en
 [8] => Content-Type: text/html;charset=ISO-8859-1
)
 [wrapper_type] => HTTP
 [stream_type] => socket
 [unread_bytes] => 1067
 [timed_out] =>
 [blocked] => 1
 [eof] =>

146

Oct. 18, 2005

Sockets

• Sockets provide the lowest-level form of network
communication
 Because of this, you should use them only when strictly

necessary

• Several transports are supported:
 TCP/UPD
 SSL
 TLS
 UNIX
 UDG

• You can’t switch transports mid-stream
 Sometimes problematic for TLS

147

Oct. 18, 2005

Sockets

• Opening:
 $fp = fsockopen ($location, $port, &$errno, &$errstr)
 You can then use fwrite, fread(), fgets(), etc.

• Opening persistend sockets:
 $fp = pfsockopen ($location, $port, &$errno, &$errstr)
 Persistent sockets will only work for persistent APIs, like

mod_php on Apache and FastCGI
 Connections can also be terminated from the remote

host because of lack of network activity
 Use with care—lots of potential pitfalls!

148

Oct. 18, 2005

Socket Timeout

• An optional fifth parameter to fsockopen()
indicates timeout
 $fp = fsockopen("www.php.net", 80, $errno, $errstr, 30);
 Timeout is in seconds
 Default is stored in default_socket_timeout PHP.INI

setting

• Timeout must be set separately for network
activity:
 socket_set_timeout ($socket, $timeout)

• Sockets can be blocking or non-blocking
 stream_set_blocking ($socket, FALSE);
 This needs a pre-existing socket!

149

Oct. 18, 2005

Q&A Time

• What does an “inner join” construct do?

• What function would you use to open a socket
connection manually with the purpose of
communicating with a server not supported by a
file wrapper?

• When dealing with timeout values in sockets, the
connection timeout can be changed
independently of the read/write time out. Which
function must be used for this purpose?

150

Oct. 18, 2005

Answers

• What does an “inner join” construct do?

• It creates a result set based on the rows in
common between two tables

151

Oct. 18, 2005

Answers

• What function would you use to open a socket
connection manually with the purpose of
communicating with a server not supported by a
file wrapper?

• fsockopen()

• pfsockopen() for persistent connections

152

Oct. 18, 2005

Answers

• When dealing with timeout values in sockets, the
connection timeout can be changed
independently of the read/write time out. Which
function must be used for this purpose?

• stream_set_timeout()

153

Oct. 18, 2005

PART VI: Secure, Optimize, Debug

• What we’ll cover in this section:
 Data filtering
 SQL injection
 Command injection
 XSS
 Safe mode
 Coding Standards
 Error logging
 Debugging and optimization

154

Oct. 18, 2005

Data Filtering

• Users are evil
 And sometimes they don’t even know it

• You should always “taint” and filter data
 PHP provides lots of functions that can help here
 Never rely on register_globals

• In fact, if you’re writing for redistribution, undo its effects if
it is on

• Data filtering depends on what you need to do
with it
 You will rarely need “raw” data
 Most of the time, it needs to be escaped to do

something or other—e.g.: display, insert into db, and so
on

155

Oct. 18, 2005

SQL Injection

• SQL injection occurs when improperly filtered
data ends up in a database query
 “SELECT * FROM USER WHERE ID = $id”
 $id = “1; DELETE FROM USER;”

• Most DBMS modules have their own escaping
mechanisms
 mysql_real_escape_string()
 addslashes() — The swiss army knife approach

156

Oct. 18, 2005

Command Injection

• Command injection takes place when
improperly filtered input ends up in a shell
command

• Both commands and parameters should be
escaped:
 escapeshellcmd ($cmd)
 escapeshellarg ($arg)
 shell_exec ($cmd . ‘ ‘ . $arg)

157

Oct. 18, 2005

Cross-site Scripting

• XSS happens when improperly escaped input is
outputted to the client
 XSS can be used for all sorts of nasty purposes
 Often underrated, it is an extremely serious security

problem
 It’s often easy to implement on the attacker’s side

• User input should be properly escaped before
being outputted back to the browser
 htmlspecialchars()
 htmlentities()
 strip_tags()

158

Oct. 18, 2005

Safe Mode

• Safe mode implements certain restrictions to
help prevent security problems
 UID matching
 open_basedir restrictions

• Safe mode and open_basedir have several
drawbacks
 PHP is not the right place for implementing security at

this level
 Files created in safe_mode may not be readable by

your scripts!
 Add noticeable overhead to the system

159

Oct. 18, 2005

Coding Standards

• Coding standards help writing good code
 There is no “official” standard connected with the

exam

• A few ideas:
 Flattening if statements
 Splitting long statements across multiple lines
 Using substitution instead of concatenation

• Watch out for performance hits

 Comparison vs. Assignment
• Reverse comparisons

 Use type-sensitive comparisons when possible
 Validate resources

160

Oct. 18, 2005

Error Management

• PHP has an impressive array of error
management facilities—use them!

• Report all errors during development

• Keep error reporting on in production, but shift to
logging

• Implement your own error handlers

161

Oct. 18, 2005

Debugging

• Debugging can be very difficult

• “Echo” debugging is the simplest form
 Output status throughout the script’s execution

• Complex logic is better handled through
external debuggers
 Lots available—from open source (Xdebug) to

commercial (e.g.: Zend Studio IDE)
 IDEs support both local and remote debugging

162

Oct. 18, 2005

Optimization

• Optimization can be as simple as installing a
bytecode cache
 No changes to codebase
 Immediate (but limited) benefits

• Proper optimization requires good analysis
 Finding bottlenecks

• Optimization can take place on multiple levels:
 Write faster code
 Remove external bottlenecks
 Use caching for internal bottlenecks
 Improve web server configuration

163

Oct. 18, 2005

Q&A Time

• Although the best practice is to disable
register_globals entirely, if it must be enabled,
what should your scripts do to prevent malicious
users from compromising their security?

• When uploading a file, is there a way to ensure
that the client browser will disallow sending a
document larger than a certain size?

• Can you turn off all error reporting from within a
script with a single PHP function call?

164

Oct. 18, 2005

Answers

• Although the best practice is to disable
register_globals entirely, if it must be enabled,
what should your scripts do to prevent malicious
users from compromising their security?

• Filter all data

• Initialize all variables

165

Oct. 18, 2005

Answers

• When uploading a file, is there a way to ensure
that the client browser will disallow sending a
document larger than a certain size?

• No.
 You can check a file size after it’s been uploaded
 The server can ignore files above a certain size
 But you can’t prevent the user from trying to send the

data across the network

166

Oct. 18, 2005

Answers

• Can you turn off all error reporting from within a
script with a single PHP function call?

• No.
 error_reporting() will not silence parse errors

167

Oct. 18, 2005

Conclusion

• A few quick words about the exam

• Pay close attention to the code
 Pay close attention to the code
 Are you paying close attention yet???

• You have 90 minutes—use them all

• Use the booklet to mark your questions before
you transfer them over to the answer sheet

• Remember that you’re working with PHP 4, not
PHP 5—and 4.3, not 4.4!

• Don’t forget to sign up for your exam at the
registration desk

168

