October 18-21, 2005
San Francisco, CA

Fower Your Business wlilbh PHP

/end PHP Certification Tutorial

Marco Tabini
php | architect

marcot@tabini.ca

www.phparch.com

October 18, 2005

Hyatt Regency San Francisco Airport Burlingame, CA

Welcomel

e A few words about me

* A few words about what we’ll be covering
= This is not a PHP tutoriall
= | expect that you already have some PHP experience
= Goals of this tutorial
= Structure

Oct. 18, 2005 2

A bit about the exam

* We'll talk about the exam proper at the end of
the tutorial

* The exam covers only PHP 4 — not PHP 5

* If you are taking the exam here, it will be on
paper, not on a computer

* The exam tests your knowledge of PHP, not your
knowledge of programming

Oct. 18, 2005 3

Part | - The PHP Language

* What we’ll cover in this section:
= PHP Tags
= File inclusion
= Data types & typecasting
= Variables and constants
= Operators
= Conditionals
= |teration
= Functions

= Objects

Oct. 18, 2005 4

* Tags “drop” you out of HTML and into PHP mode

* PHP recognizes several types of tags:

Short tags: <¢ ¢>

Special tags: <¢= 2>

Regular tags: <¢php ¢>

ASP tags: <% %>

HTML script tags: <script language="PHP"> </script>

Oct. 18, 2005

File Inclusion

* External files can be included in a script using
either include() or require()

* Both are constructs, not functions:
= include (‘myfile.php’); or include ‘myfile.php’;
* They behave in exactly the same way, except
for how they handle failure
= include generates a warning

= require throws an error

= Upon inclusion, the parser “drops off” of PHP mode
and enters HTML mode again

e Variants: include_once()/require_once()
= Prevent multiple inclusions from within the same script

Oct. 18, 2005 6

Data Types

* PHP is not a typeless language
* |t supports many different data types
* |tis loosely typed

* The interpreter automatically “juggles” data
types as most appropriate

* “Most appropriate” doesn’t necessarily mean
always appropriate

Oct. 18, 2005 7

Data Types — Numeric/Boolean

* PHP recognizes two types of numeric values:
= Integers
= Floats

* Boolean values are used for logic operations

= True / False
= Easily converted to integers: non-zero / zero

* Result type of operations depends on types of
operands

= For example: int + int == Int — int / float == float
int / int == int or float

* Numbers can be specified in a number of ways:
= Decimal (123), Hexadecimal (0x123) and Octal (0123)

Oct. 18, 2005 8

Data Types — Strings

o Strings are heterogeneous collections of single-
byte characters
= They don't necessary have to be text

= They can represent Unicode as well, but cannot be
manipulated by the standard PHP functions

* PHP supporis three ways of declaring strings:
= Single quotes: ‘test 12 3’
= Double quotes: “test 1 2 3\n"
= Heredoc syntax: <<<EOT test 123
EOT,;
* Main differences:

= Support for variable substitution / escape sequences
= All strings support newline characters

Oct. 18, 2005

Data Types — Arrays

* Arrays are ordered siructures that map a key to
a value

* Values can be of any type—including other
arrays

* Keys can be either integer numeric or strings
= Keys are unigque
= Negative numbers are valid keys

Oct. 18, 2005

Data Types — Resources / Null

* Resources are special containers that identify
external resources

= They can only be operated on directly as part of
logical operations

= They are usually passed to C-level functions to act on
external entities

= Examples: database connections, files, streams, etc.

* NULL is a special value that indicates... no valuel
= NULL converts to Boolean false and Integer zero

Oct. 18, 2005 11

Data Types — Objects

* Objects are containers of data and functions

The individual data elements are normally called
properties

The functions are called methods

Individual members (methods / properties) of an
object are accessed using the -> operator

We'll cover objects in more depth later in this section

Oct. 18, 2005

Typecasting

e PHP’s ability to juggle among different data
types is not entirely dependable

* There are circumstances in which you will want
to control how and when individual variables
are converted from one type to another

* This is called Typecasting

Oct. 18, 2005 13

Typecasting — Integers

* You can typecast any variable to an integer
using the (int) operator:
= echo (int) “test 1 2 3";

* Floats are automatically truncated so that only
their integer portion is maintained
= (int) 99.99 == 99
* Booleans are cast to either one or zero:

= (int) TRUE == 1 — (int) FALSE ==
» Strings are converted to their integer equivalent:
= (int) “test 123" ==0, (int) “123" == 123

= (int) "123test” == 123 // String begins with integer
* Null always evaluates to 0

Oct. 18, 2005 14

Typecasting — Booleans

* Datais cast to Boolean using the (bool)
operator:
= echo (bool) “17;
* Numeric values are always TRUE unless they
evaluate to zero
o Strings are always TRUE unless they are empty
= (bool) “FALSE" == frue

* Null always evaluates to FALSE

Oct. 18, 2005

Typecasting — Strings

Data is typecast to a string using the (string)
operator:

= echo (string) 123;

Numeric values are converted to their decimal

string equivalent:
= (string) 123.1 == “123.1™;

Booleans evaluate to either “1” (TRUE) or an
empty string (FALSE)

NULL evaluates to an empty siring

Numeric strings are not the same as their integer
or float counterparts!

Oct. 18, 2005 16

Typecasting — Arrays / Objects

e Casting a non-array datum to an array causes a
new array to be created with a single element
whose key is zero:

= var_dump ((array) 10) == array (10);

e Casting an object to an array whose elements
correspond to the properties of the object
= Methods are discarded

e Casting a scalar value to an object creates a
new instance of stdClass with a single property
called “scalar”

= Casting an array to an object create an instance of
stdClass with properties equivalent to the array’s
elements

Oct. 18, 2005 17

ldentifiers / Variables / Constants

* |dentifiers are used to identify entities within a
script

= |dentfifiers must start with a letter or underscore and

can contain only letters, underscores and numbers

* Variables
= Containers of data
= Only one data type at any given fime
= Variable names are case-sensitive identifiers prefixed
with a dollar sign ($my_var)
= Variables can contain references to other variables

* Constants
= Assigned value with declare(), cannot be modified

= User-defined constants are not case-sensitive
Oct. 18, 2005

Substitution / Variable variables

* Variables can be substituted directly within a
double-quoted or Heredoc string
= $a=10;
echo “\$ais: $a”; // Will output $ais: 10
e Variables values can be used to access other
variables (variable variables):
n $Q — “b”;
$b =10;
echo $%$a; // will output 10

Oct. 18, 2005 19

Statements

* Statements represent individual commands that
the PHP interpreter executes
= Assignment: $a = 10;
= Construct: echo $q;
= Function call: exec ($a);

e Statements must be terminated by a semicolon

= Exception: the last statement before the end of a PHP
block

Oct. 18, 2005 20

Operations

* PHP supports several types of operations:
= Assignment
= Arithmetic
= Bitwise
= String
= Comparison
= Error control
= Logical

Oct. 18, 2005

21

Operations — Assignment

* The assignment operator ‘=" makes it possible to
assign a value to a variable
= $a=10;
* The left-hand operand must be a variable

= Take advantage of this to prevent mistakes by
“reversing” logical operations (as we'll see later)

= 10 = $aq; // Will output error

Oct. 18, 2005 22

Operations — Arithmetic

* These operators act on numbers and include the
four basic operations:

= Addition: $a + $b
= Subftraction: $a - b
= Multiplication: $a * $b
= Division: $a/ $b

* Remember that dividing by zero is illegal

* They also include the modulus operator

= Determines the remainder of the integer division
between two numbers: 10 % 4 = 2

= Unlike proper modulus, PHP allows a negative right-
hand operand

* 10%-4=2

Oct. 18, 2005 23

Operations — Bitwise

* Bitwise operations manipulate numeric values at
the bit level
= AND (&) —set bitif it is set in both operands
e 1 &0==
OR (|) —set bitifisis set in either operand
] |0==
XOR (A) — set bit if it is set in either, but not both
e 1A ==
NOT — invert bits
o ~0 ==-
Shift left/right (<</>>) - shift bits left or right

° '|<<2::4::8<<]

* Excellent shortcuts for infeger multiplications by powers of
two

Oct. 18, 2005 24

Operators — Combined

* Numeric and bitwise operators can be
combined with an assignment:
= $a +=10is equivalent to $a = $a + 10;
* This does not apply to the NOT operator, since
it’'s unary

Oct. 18, 2005 25

Operators — Error Conftrol

* PHP support several different levels of errors

* Error reporting can be tweaked either through
PHP.INI settings or by calling error_reporting().

* Remember that the exam assumes the default
“recommended” INI file
= Warning and Notices are not reported!

* Error reporting can be controlled on a
statement-by-statement basis using the @
operator:

= @fopen ($fileName, “r");

= This only works if the underlying functionality uses PHP's
facilities to report its errors

Oct. 18, 2005 26

Operators — Inc/Dec and String

* Incrementing and decrementing operators are
special unary operators that increment or
decrement a numeric variable:

= Postfix: $a++

= Prefix: ++$a

= You cannot perform two unary operations on the same
variable at the same time— ++%$a-- will throw an error

* The only string operation is the concatentaion
(.), which “glues” together two strings into a third
one

=Yg’ 'b'=="ab’

Oct. 18, 2005 27

Operators — Comparison / Logical

e Comparison operators are used to compare
values:
= Equivalence: == I=

* Equivalence operators do not require either of their
operands to be a variable

= |dentity: === ==
= Relation: <, <=, >=, >
* Logical operators are used to manipulate
Boolean values:
= AND (&&) — TRUE if both operands are TRUE

= OR (|])—TRUEIf either operand is TRUE
= XOR (xor) — TRUE if either operand is TRUE, but not both
= NOT () — Reverses expression

Oct. 18, 2005 28

Operator Precedence

* The precedence of most operators follows rules
we are used to—but not all of them
= Example: “test " . 1+ 10.“ 123" ==*1 123"

* There are two variants of logical operators

= The “letter” operators AND, OR differ from their
“symbol” equivalents &&, | | in the fact that they have
lower precedence

Oct. 18, 2005 29

Conditionals — if-then-else

e Conditionals are used to direct the execution
flow of a script
= if (condifion) {

... Statements ...
} else {

... Statements ...

}
e Alternative short form:
= $a = (cond) ¢ yesvalue : novalue;

Oct. 18, 2005 30

Conditionals — case/switch

* Case/switch statements allow you to verify a
single expression against multiple expressions:

= switch (expr) {
case exprl :
... Statements ...
break;

case expr2:
... Statements ...
break;

default:
... Statements ...
break;

}

Oct. 18, 2005 31

lterators — While

* While loops are the simplest form of iterator; they
allow you to repeat a set of statements while a
condition evaluates to TRUE:

= while (expr) {

... statements ...

Oct. 18, 2005 32

lterators — Do...while

* Do...while loops are equivalent to while loops,
but the condition is evaluated at the end of the
loop, instead of the beginning:

= do{

... statements ...
} while (expr);

= This means that the statement block is executed at
least once

Oct. 18, 2005 33

lterators — For and Foreach

* While and do...while are the only indispensible
iterators in any language.

* For convenience, PHP includes for loops:

= for (inifial; condition; incremental) {
... sStatements ...

}
* Foreach loops can be used to iterate through an
aggregate value:
= foreach ($array as $k => $v) {
... Statements ...

}

= Important: $k and $v are assigned by value!
= Works on objects, too!

Oct. 18, 2005

34

lterators: continuing/breaking

* Loops can be continued using the continue

construct:
= while ($a == 1) {if ($b == 2) continue; }
* Loops can be interrupted using the break
construct:
= while ($a == 1) {if ($b == 2) break; }
* Multiple nested loops can be continued/broken
at once:

= continue 2;

= Remember the semicolon at the end of the break or
continue statement!

Oct. 18, 2005 35

Functions

e Functions allow for code isolation and reuse

= function myfunc (&$argl, $arg2 = 10)
{

global $variable;

... Statements ...

}

echo myfunc (10);
* Pay attention to variable scopel!

* Functions can support variable parameters:
= func_num_args();
= fung_get_arg();

Oct. 18, 2005 36

OQOP: Classes and Objects

* Classes define the structure of objects:

= class myClass {
var $myVar;

function myClass() { // constructor
$this->myVar = 10;
}
* Objects represent individual instances of a class:
= $a = new myClass;
$a->myVvar=11;
* Objects support dynamic methods and
properties:
= $obj->$var();

Oct. 18, 2005 37

OOP: Classes as Namespaces

* PHP does not support namespaces (this is frue
also of PHP 5), but classes can simulate their
behaviour:

= class class encode {
function baseé4($str)

{

return baseé4_encode($str);

}
}

echo encode::baseé4("'my string");

Oct. 18, 2005 38

OOP: Objects and References

* In PHP 4, objects receive no special treatment:
they are essentially arrays with embedded
functions

= This means that references to objects must be handled
with care.

* Passing/assigning an object is normally done by
value, not by reference, even when using new

Oct. 18, 2005 39

OOP: Objects and References

* The Sthis special variable cannot be passed by
reference, even if you use the & operator

= However, you can embed $this in a global array and
circumvent this problem (albeit in a horrible way):

* class obj {
var $prop;
function obj($arg)
{
global $obji; // import variable into local scope
$obiji[] = $this; // get a copy of current class
$this->prop = $arg;
}
}
$obj = new obj(123);
var_dump ($obj->prop = $obiji[0]->prop); // FALSE

Oct. 18, 2005 40

OOP: Inheritance

* |Inheritance makes it possible to create classes
(“subclasses”) that are based on other classes
(“superclasses’):

= class base {
function base()

{
}
}

class main extends base {
function main()

{

parent::base();

}
}

Oct. 18, 2005 41

OQOP: Object Serialization

» Serialization is the process of reducing an
aggregate (array or object) to a scalar (string)

» Serialization is a mostly automatic process, but
for objects it is possible to exercise a certain
amount of control:

= _ sleep|)
= _ wakeup()

= Useful for dynamically-generated properties, such as
database connections and file descriptors

= Classes must be declared before their instances are
unserialized

Oct. 18, 2005 42

Q&A Time

* What is the difference between print and echo?

* Under what circumstance is it impossible to

assign a default value to a parameter while
declaring a function?

* How does the identity operator === compare
two values?

Oct. 18, 2005 43

ANswers

* What is the difference between print and echo?

e echois a construct
e printis a function

Oct. 18, 2005 44

ANswers

* Under what circumstance is it impossible to
assign a default value to a parameter while
declaring a function?

* Always, as long as the parameter is not being
passed by reference

Oct. 18, 2005 45

ANswers

* How does the identity operator === compare
two values?

* |t first compares the type, then the value

Oct. 18, 2005 46

Part Il — Strings and Arrays

e What we'll cover in this section:

Comparisons

Basic search and replace

Regular Expressions

String functions and formaftting
Accessing arrays

Single- and multidimensional arrays
Array iteration

Array sorting

Array functions and manipulation
Serialization

Oct. 18, 2005

47

String Comparison

o String comparison is mostly ftrivial, but can
sometimes be tricky

= The equivalence operator should be used when you
know that you are comparing two strings—or when
you don't care about cases like this:
o "123test” == 123 == TRUE!

= The identity operator should be otherwise used every
time you know that you want to compare two strings
without letting PHP juggle types

* PHP also provides function-based comparison:
= stremp()
= strcasecmp()
= strncmp() and strncasecmp()

Oct. 18, 2005 48

Basic String Searching

o strsir() (aliased into strchr()) determines whether
a substring exists within a string:
= strstr ("PHP is a language”, "PHP") == true
= stristr() provides a case-insensitive search

* strpos() will return the location of a substring
inside a string, optionally starting from a given
position:

= strpos ($haystack, $needle, $pos)
= Beware of zero return values!
= There is no stripos() in PHP 4!

* Reverse search is done with strrchr() / strrpos()

Oct. 18, 2005

49

Counting Strings

* The length of a string is determined with strlen()
= Do not use count()!

* You can count words inside a string using
str_word_counti():
= str_word_count ($str, $n);
= $n == 1 — Returns array with words in order
= $n == 2 — Returns array with words and positions

* substr_couni() can be used to count the number
of occurrences of a given substring:
= substr_count (“phpphpPHP”, “php”) ==

Oct. 18, 2005 50

Formartting Strings

* Most of the time, strings can be formatted using
a combination of concatenations

* |[n some cases, however, it is necessary to use
special functions of the printf() family
= printf() — outputs formatted strings to STDOUT
e printf (“*%d", 10);
= sprintf() — returns the formatted string
o $a = sprintf (“%d", 10);
= fprintf() — outputs formatted strings to a file descriptor
o fprintf ($f, “%d", 10);
= vprintf(), vsprintf() — take input from array
o vprintf (“%d"”, array (10));
e $a = vsprintf (“%d", array (10));

Oct. 18, 2005 51

Formartting Strings

* % - a literal percent character.

* b -integer presented as a binary number

* ¢ —integer (ASCII value)

* d -integer (signed decimal number)

* e — number in scientific notation (Ex. 1.2e+2)
* U -integer (unsigned decimal number)

* f-float as a floating-point number.

* o -integer (octal number).

* s —string

* x - hexadecimal number (lowercase letters).

* X -hexadecimal number (uppercase letters).
Oct. 18.2005 52

Accessing Strings as Arrays

* You can access individual characters of a string
as if it were an array
= $s="12345";
echo $s[1]; // Outputs 2
echo $s{1}; // Outputs 2
= This works for both reading and writing

= Remember that you cannot use count() to determine
the number of characters in a string!

Oct. 18, 2005

53

Extracting and Replacing

* Substrings can be exiracted using the subsir()
function:
= echo substr (“Marco’”, 2, 1); // Outputsr
= echo substr (“Marco”, -1); // Outputs o
= echo substr (“Marco”, 1, -1); // Outputs arc

e Substrings can be replaced using substr_replace
():
= substr_replace (‘Marco’, ‘acr’, 1, -1) == “Macro”
* The sscanf() function can be used to exiract
tokens formatted a la printf() from a string:

= sscanf(“ftp://127.0.0.1", "%3c://%d.%d.%d.%d:%d");
= Returns array (‘ftp’, ‘127°, '0’, '0’, ‘'1");

Oct. 18, 2005 54

Multiple Replacements

» str_replace() replaces instances of a substring
with another:
= str_replace (“.net”, “arch”, "php.net”) == "phparch”

* You can perform multiple replacements by
passing arrays to sir_replace():

= str_replace(array('‘apples’, '‘applesauce’, 'apple’),
array(‘oranges’, 'orange-juice’, 'cookie'),
“apple apples applesauce’)

= Returns “cookie oranges orangesauce”

Oct. 18, 2005 55

PCRE — Perl Regular Expressions

* Perl Regular Expressions (PCRE) make it possible
to search (and replace) variable patterns inside
a string

e PCRE is usually fast and simple to understand,
but it can also be complicated or slow (or both)

* Regular expressions are matched using the
preg_match() function:
= preg_match ($pcre, $search, &$results)
= preg_match_all ($pcre, $search, &Iresults)

* Search-and-replace is performed using
preg_replace():
= preg_replace ($pcre, $replace, $search)

Oct. 18, 2005 56

PCRE — Meta Characters

* Meta characters are used inside a regex to
represents a series of characters:
= \d — digits 0-9
= \D — not a digit
= \w — alphanumeric character or underscor
= \W — opposite of \w
= \s — any whitespace (space, tab, newline)
= \S — any non-whitespace character
= . — any character except for a newline

* Meta characters only match one character at a time (unless
an operator is used to change this behaviour)

Oct. 18, 2005

57

PCRE — Operators / Expressions

* PCRE operators indicate repetition:
= ¢2—0orltime
= *— 0 ormore times
= +— 1 or more times
= {,n} — af more n fimes
= {mM,} — m or more times
= {m,n} — at least m and no more than n times

* Parentheses are used to group patterns
= (abc)+ — means “Yabc” one more times

e Square brackets indicate character classes
= [0-z] means “any character between a and z

= The caret negates a class: [Aa-z] is the opposite of the

expression gabove
Oct. 18, 2005 58

PCRE — An example

* Here’s an example of a PCRE:

= $string = *123 abc’;
preg_match (‘/\d+\s\[a-z]+/*, $string);

preg_match (‘/Aw\s\s/’, $string);

preg_match (‘*\d{3}\s[a-z]{3}'/, $string);

Oct. 18, 2005 59

PCRE — Another Example

* Here’s an example of how to retrieve data from
aregex:

= $email = ‘marcot@tabini.ca”;
preg_match (‘/(\w+)@\w+)\.(\w+)/’);

= Will return array (‘marcot@tabini.ca’, ‘marcot’,
‘tabini’, ‘ca’)

Oct. 18, 2005 60

String Splitffing and Tokenization

* The explode() function can be used to break up
a string intfo an array using a common delimiter:
= explode (., ‘www.phparch.com’);
= Will return array (‘www’, ‘phparch’, ‘com’);
* The preg_split() function does the same thing,
but using a regex instead of a fixed delimiter:
= explode (‘[@.]", ‘marcot@tabini'ca’);
= Willreturn array (‘marcot’, ‘tabini’, ‘ca’);

Oct. 18, 2005 61

Word Wrapping

* The wordwrap() function can be used to break a
string using a specific delimiter at a given length
= wordwrap ($string, $length, $delimiter, $break);
* If the Sbreak parameter evaluates to TRUE, the

break occurs at the specified position, even if it
occurs in the middle of a word

Oct. 18, 2005 62

e Arrays are created in a number of ways:
= Explicitly by calling the array() function
e array (1, 2, 3, 4);
e array (1 =>1, 2, 3, 5=>"test");
e array (“2" =>10, “a” => 100, 30);
= By inifializing a variable using the array operator:
o $x[] = 10;
« $x[-1] = 10;
° $x['a’] =10;
* The couni() function is used to determine the
number of elements in an array

= Executing count() against any other data type
(including objects), it will return 1 (or O for NULL)

Oct. 18, 2005 63

Array Contents

e Array can contain any data type supported by
PHP, including objects and other arrays

* Data can be accessed using the array operator
= $x = $array[10];
* Multiple elements can be exitracted using the list
function:

= $array = (1, 2, 3);
list ($v1, $v2, $v3) = $array

Oct. 18, 2005 64

Array lteration

* It's possible to iterate through arrays in a number

of ways. Typically:
* for (Si = 0; Si < count (Sarray); Si++) // WRONG!
= $cnt = count ($array)
for ($i = 0; $i < $cnt; Pi++)
= Storing the invariant array count in a separate variable
improves performance

* foreach (Sarray as Sk => Sv)

= $k and $v are assigned by value—therefore, changing
them won't affect the values in the array

= However, you can change the array directly using $k:
= $array[$k] = $newValue;

Oct. 18, 2005 65

Array lteration

* You can also iterate through an array using the
internal array pointer:
= $a =array(1,2,3);

while (list($k, $v) = each($a)) {
echo "{$k} => {$v} ";
if ($k % 2) {// add enftry if key is odd
$af] = $k + $v;
}}//O=>1 1=>22=>33=>34=>6
= With this approach, operations take place directly on
the array

* Finally, you can use array_callback() to iterate
through an array using a user-supplied function

Oct. 18, 2005 66

Zend 05

pPhp

Array Keys and Values

* You can check if an element exists in one of two
ways:
= array_key_exists ($array, $key); // Better, but slower

= isset ($array[$key]); // Faster, but has pitfalls
e $a[1] = null;
echo isset ($a[1]);

* You can also check whether a value exists:
= in_array ($value, $array)
* You can extract all the keys and values from an
array using specialized functions:
= array_keys ($array);
= array_value ($array);

Oct. 18, 2005 67

Sorting Arrays

* The sort() and rsori() functions sort an array in-
place
= sort ($array); — rsort ($array)

= Key associafion is lost—you can use asort() and arsort()
to maintain it

* A more “natural” sorting can also be performed:
= natsort ($array);
= natcasesort ($array);

» Sorting by key is also a possibility:
= ksort();
= krsort();

Oct. 18, 2005

68

Array Functions

* Changing key case:
= array_change_key_case ($a, CASE_LOWER)
= array_change_key_case ($a, CASE_UPPER)
* Randomizing the contents of an array:
= shuffle($array)

* Exiracting a random value:
= array_rand ($array, $aty);

Oct. 18, 2005 69

Merge, Diff and Sum

* Merging arrays:

= array_merge ($a, $b[, ...]);

= Later values with the same key overwrite earlier ones
* Diff'ing arrays:

= array_diff ($a, $b[, ...]);

= Returns keys that are not common to all the arrays

= Key association is lost—you can use array_diff_assoc()
to maintain it

* Intersecting:
= array_intersect ($a, $b[, ...]);

e Calculating arithmetic sum:
= array_sum ($array);

Oct. 18, 2005 /70

Unigue Array Values

* The array_unique() function retrieves all the
unique array values
= array_unigue ($array)

= Requires traversal of entire array and therefore
hampers performance

Oct. 18, 2005 71

Zend 05

pPhp

AIrays as stacks or gueue

* The array_push() function pushes a new value at
the end of an array
= array_push ($array, $value)
= Essenfially equivalent to $array[] = $value;
* The array_pop() retrieves the last value from an
array:
= $x = array_pop ($array);
* This allows you to use arrays as if they were
stacks (LIFO)

* You can also pull a value from the top of the
array, thus implementing a queue (FIFO)
= $x = array_shift ($array)

Oct. 18, 2005 72

Serializing Arrays

* like with objects, you can serialize arrays so that
they can be conveniently stored outside your
script:

= $s = serialize ($array);

= $array = unserialize ($s);

= Unserialization will preserve references inside an array,
sometimes with odd results

Oct. 18, 2005 /3

Q&A Time

* Given a comma-separated list of values in a
string, which function can create an array of
each individual value with a single call?

* The function can be used to
ensure that a string always reaches a specific
minimum length.

* Which function would you use to rearrange the
contents of the array (‘a’, ‘b’, ‘c’, ‘d’) so that they
are reversed?

Oct. 18, 2005 74

ANswers

* Given a comma-separated list of values in a
string, which function can create an array of
each individual value with a single call?

* explode()
* preg_split() would have also been acceptable

Oct. 18, 2005 75

ANswers

e The function can be used to

ensure that a string always reaches a specific
minimum length.

o str_pad()

Oct. 18, 2005

76

ANswers

* Which function would you use to rearrange the
contents of the array (‘a’, ‘b’, ‘c’, ‘d’) so that they
are reversed?

* rsori()
* array_reverse()

Oct. 18, 2005 77

* What we'll cover in this section:
= HTML form management
= File uploads
= Cookies
= Magic Quotes
= Sessions
= Times and dates in PHP
= Formatting date values
= Locale-dependent date formatting
= Date validation

Oct. 18, 2005 /8

HIML Form Management

* HTML forms are submitied by the browser using
either GET or POST
= GET transaction data is sent as part of the query string
= POST data is sent as part of the HTTP transaction itself
= POST is often considered “safer” than GET—WRONG!

* POST data is made available as part of the
S_POST superglobal array

* GET data is made available as part of the S_GET
superglobal array
= Both are “superglobal”—in-context everywhere in your
scripts
= |f duplicates are present, only the ones sent last end up
in the appropriate superglobal

Oct. 18, 2005 79

HIML Form Management

* Element arrays can also be sending by
posifixing the element names with []
= These are transformed into arrays by PHP

= The brackets are discarded
= A very common (and pernicious) type of security
attack
* You can also specify your own keys by placing
them inside the brackets:
= <input type="hidden” name="q(ts]" value="1">

= Willresult in $a['ts’] = 1 being inserted in the
appropriate superglobal

Oct. 18, 2005 80

Uploading Files

* Files are uploaded through a special type of
HTML form:

= <form enctype="multipart/form-data” action="/
upload.php” method="post'"™>
<input type="my_file" type="file" />
<input type="hidden" name="MAX_FILE_SIZE"
value="100000" />
</form>

* An arbitrary number of files can be uploaded at
the same time

Oct. 18, 2005 81

Uploading Files

* Once uploaded, file information is available
through the S_FILES superglobal array

i [my_file] => Array
(
‘'name] => php.gif
type] => image/gif
tmp_name] => /tmp/phpMJLN2g
error] =>0
size] => 4644

)
* Uploaded file can be moved using

move_uploaded._file()
= You can also determine whether a file has been
uploaded using is_uploaded_file()

Oct. 18, 2005

82

Uploading Files

* File uploads are controlled by several PHP.INI
settings:

file_uploads — whether or not uploads are enabled

upload_tmp_dir — where temporary uploaded files are
stored

upload_max_filesize — the maximum size of each
uploaded file

post_max_size — the maximum size of a POST
transaction

max_input_fime — the maximum time allowed to
process a form

Oct. 18, 2005

83

Cookies

* Cookies are small text strings that are stored
client-side

* Cookies are sent to the client as part of the HTTP
response, and back as part of the HTTP headers

* Cookies are notoriously unreliable:
= Some browsers are set not to accept them
= Some users do not accept them

= |ncorrect date/time configuration on the client’s end
can lead to cookies expiring before they are set

Oct. 18, 2005 84

Cookies

* To set a cookie:
= sefcookie ($name, $value, $expires, $path, $domain);
= sefcookie ($name, $value); // sets a session cookie

* Cookies are then available in the S_ COOKIE
superglobal array:
= $ COOKIE['mycookie’]

= $ COOKIE is populated at the beginning of the script.
Therefore, it does not contain cookies you set during
the script itself (unless you update it manually)

e You cannot “delete” a cookie

= You can set it to Null or an empty string
* Remember not to use isset()!

= You can expire it explicitly

Oct. 18, 2005 85

$_REQUEST

 $S_REQUEST is a superglobal populated from
other superglobals
= You have no conftrol over how data ends up in it

= The variables_order PHP.INI setting controls how data is
loaded into it, usually Get -> Post -> Cookie

* Generally speaking, you're better off not using it,
as it is a virtual security black hole.

Oct. 18, 2005 86

Magic Quoftes

* By default, PHP will escape any “special”
characters found inside the user’s input

* You should not rely on this setting being on (as
most sysadmins turn it off anyway)

* You also (and most definitely) should not rely on
it performing proper input filtering for you

* |n fact, supply your own escaping and “undo”
magic quotes if they are enabled!

Oct. 18, 2005 87

Sessions

* Sessions are mechanisms that make it possible
to create a per-visitor storage mechanism on
your site

* Sessions we born—and remain—a hack, so you
can only depend on them up to a certain point

* On the client side, sessions are just unique IDs
passed back and forth between client and
server

* On the server side, they can contain arbitrary
informaiton

Oct. 18, 2005 88

Sessions

* |In order to write to a session, you must explicitly
start it
= session_start()

= This is not necessary if session.auto_start is on in your
PHP.INI fil

* You can then write directly into the S_SESSION
array, and the elements you create will be
transparently saved into the session storage
mechanism

= $_SESSION[‘test’] = $myValue

Oct. 18, 2005 89

Sessions

* By default, session data is stored in files;
however, you can specify a number of built-in
filters

* You can also define your own session handlers
in “userland”

Oct. 18, 2005

90

Date Manipulation in PHP

* For the most part, PHP handles dates in the UNIX
timestamp format

= Timestamps indicate the number of seconds from the
UNIX “epoch’, January 1st, 1970

= Not all platforms support negative timestamps (e.g.:
Windows prior to PHP 5.1)

* Timestamps are very handy because they are
just large intergers

= This makes it easy to manipulate them, but not
necessarily to represent them

= They are also handy for time calculations
= For more precision, you can use microtime()

Oct. 18, 2005 91

Date Manipulation in PHP

* Another way of representing dates is through

date arrays using getdate()

= A date array contains separate elements for each
component of a date

= [seconds] =>15//0-59

'minutes] =>15//0- 59

hours] =>9 //0-23

‘mday] =>4 //1- 31

wday] =>3//0-6

mon] =>8//1-12

'year] => 2004 // 1970 - 2032+

'yday] => 216 // 0 - 366

'weekday] => Wednesday // Monday - Sunday
'month] => August // January - December
[0] => 1091625315 // UNIX fime stamp

Oct. 18, 2005 92

Time and Local Time

* The time() function returns the timestamp for the
current time
= time() (no parameters needed)

* Localtime performs similarly, but returns an array

XN M WN—=O

=> 59 // seconds O - 59

=> 19 // minutes O - 59

=>9 // hourO - 23

=>4 // day of month 1 - 31

=> 7 [/ month of the year, starting with 0 for January
=> 104 // Years since 1900

=> 3 // Day of the week, starting with O for Sunday
=> 216 // Day of the year

=>1// Is daylight savings tfime in effect

Oct. 18, 2005

93

More Local Time

* Localtime() can also return an associative array:
= var_dump (localtime(time, 1));
= Qutputs:

* [tm_sec] =>1//seconds O - 59
[tm_min] => 23 // minutes 0 - 59
[tm_hour] =>9 // hour 0 - 23
[tm_mday] =>4 // day of month 1 - 31
[tm_mon] => 6 // month of the year, 0 for January
[tm_year] => 104 // Years since 1900
[tm_wday] => 0 // Day of the week, 0 for Sunday
[tm_yday] => 185 // Day of the year
[tm_isdst] => 1 // Is daylight savings time in effect

Oct. 18, 2005

94

Formatting Dates

* Timestamps are great for calculations, but not
for human redability

* The date() function can be used to format a
date according to an arbitrary set of rules:

= date (“Y-m-d H:i:s\n");
= date (‘\d\a\f\e: Y-m-d’);

o strftime() provides a printf-like, locale-
dependent formatting mechanism for date/time
values:

= stritime (“%A", time()); // Prints weekday

= You need to use setlocale (LC_TIME, $timezone) in
order to set the timezone to a particular value

Oct. 18, 2005 95

Creating Dates

* Dates can be created using mkiime():
= mktime (hour, min, sec, mon, day, year, daylight)

* Several date-related functions have GMT-
equivalents:
= gmmktime()
= gmdate()
= gmstrftime()

* ltis also possible to change the timezone—ijust
change the TZ environment variable:

= putenv (“TZ=Canada/Toronto");
= This will be equivalent to EST or EDT

Oct. 18, 2005 96

Interpreting Date Input

* |tis also possible to create a timestamp from a
formatted string date using strtotime():
= strotime(“now");
= strtotime(“+1 week”);
= strtotime("“November 28, 2005");
= strtotime(""Next Monday”);

* You can also check whether a date is valid by
using the checkdate() function:
= checkdate (month, date, year)
= Automatically accounts for leap years

= Not foolproof—incapable for example, to account for
the Gregorian gap

Oct. 18, 2005 97

Zend 05

pPhp

Q&A Time

* How would you make a cookie expire in exactly
one hour (assuming that the client machine on
which the browser is set to the correct time and
time zone—and that it resides in a time zone
different from your server’s)?

* What is the simplest way of transforming the
output of microtime() into a single numeric
value?

* If no expiration time is explicitly set for a cookie,
what happens to it?

Oct. 18, 2005 98

Zend 05

pPhp

ANswers

* How would you make a cookie expire in exactly
one hour (assuming that the client machine on
which the browser is set to the correct time and
time zone—and that it resides in a time zone
different from your server’s)?

* Pass time() + 3600 as the expiry

Oct. 18, 2005 99

ANswers

* What is the simplest way of transforming the
output of microtime() into a single numeric
value?

* array_sum (explode (* ‘, microtime()));

Oct. 18, 2005 100

Zend 05

pPhp

ANswers

* |If no expiration time is explicitly set for a cookie,
what happens to it?

* It expires at the end of the browser’s session

Oct. 18, 2005 101

PART IV: Files and E-maill

* What we’ll cover in this section:
= Opening and closing files
= Reading from and writing to files
= Getfing information about a file
= Copying, renaming, deleting files
= File permissions
= File locks
= Sending e-mail
= MIME
= HTML E-mails
= Multipart E-mails

Oct. 18, 2005 102

Files — Opening and Closing

* Files are open using the fopen() function:
= fopen ($filename, $mode)
= returns a file resource (not a pointer!)

* The Smode parameter indicates how the file
should be open:
= r—read only
= r+ —read/write
= w — write only and create the file
= w+ —read/write and create the file
= a— write only and position at end of file
= g+ —read/write and position at end of file
= x — write only, fail if file already exists

Oct. 18, 2005

103

Files — Opening and Closing

* If your PHP has been compiled with URL
wrappers support, fopen() works both on local
and “remote” files via any of the supported
protocols:

= fopen ("http://www.phparch.com”, "r");

* Files can be closed using fclose()

= This is not necessary, because PHP closes all open
handles at the end of script

= However, it's a good idea in some cases

Oct. 18, 2005 104

Files — Reading & Writing

* Data is read from a file through a number of
functions. The most common one is fread():
= $data = fread ($file, $qgty);
= Returns the maximum data available, up to $gty bytes

* The fgets() function reads data one line at a
time:
= $data = fgets ($file, $maxLen);

= Returns data up to (and including) the next newline
character or $maxLen - 1;
= May or may not work depending on how the file has
been encoded
* auto_detect_line_endings PHP.INI setting

Oct. 18, 2005

105

Files — Reading and Writing

* Writing works in a similar way:
= fwrite ($file, $data)

= Writes as much of $data as possible, returns amount
written

* You can also use fputs(), which is effectively an
alias for fwrite()

Oct. 18, 2005 106

Files — File Position

* The file position is updated as your read from or
write to a file

= ftell ($file) — Returns the current offset (in bytes) from
the beginning of the file
* You can manually alter the current position
using fseek():

= fseek ($file, $position, $from)

= $from can be one of three constants:
e SEEK_SET (beginning of file)
e SEEK_CUR (current offset)
e SEEK_END (end of file — $from should be < 0)

Oct. 18, 2005 107

Files — File Information

* The fstat() function returns several pieces of
information about a file:
= var_dump (fstat ($file))

 [dev] => 5633 // device
[ino] => 1059816 // inode
[mode] => 33188 // permissions
[nlink] => 1 // number of hard links
[uid] => 1000 // user id of owner
[gid] => 102 // group id of owner
[rdev] => -1 // device type
[size] => 106 // size of file

[atime] => 1092665414 // time of last access
[mtime] => 1092665412 // time of last modification
[ctime] => 1092665412 // time of last change
[blksize] => -1 // blocksize for filesystem 1/O
[blocks] => -1 // number of blocks allocated
Oct. 18, 2005 108

Files — File Information

* The stai() function is a version of fstat() that does
not require you to open the file
= var_dump (stat ($fileName))

» Several functions provide only portions of the
info returned by stai() and fstat()
= file_exists ($fileName)
= fileatime ($fileName) — Last access fime
= fileowner ($fileName)
= filegroup ($fileName)

* The results of these functions are cached

= This can lead to confusing results if you make changes
to a file in the same after you've run one of these
convenience functions

Oct. 18, 2005 109

Files — File Information

* File permissions can be determined using either
the bitmask from fstat() or some more
convenience functions

is_readable ($fileName);

is_writable ($fleName);

is_executable ($fileName);

is_uploaded_file ($fileName);

* They can also be changed:
= chmod ($fileName, 0777);
= Note use of octal number

* The filesize() function returns the size of a file
= echo filesize ($fileName)

Oct. 18, 2005 110

Copying, Renaming & Deleting

* Files can be copied using the copy() function:
= copy ($sourcePath, $destPath)

* Renaming is done through rename():

= rename ($sourcePath, $destPath);

= Guaranteed to be atomic across the same partition
* Files are deleted using unlink():

= unlink ($fileName);

= NOT delete()!

* Files can also be “touched”:
= fouch ($fleName);

* All these functions report success/failure via a
Boolean value

Oct. 18, 2005 111

Directories

* Directories cannot be removed using unlink:
= $success = rmdir ($dirName);
= The directory must be empty

= This means that you must write your own code to
empty the directory and any subdirectories

Oct. 18, 2005 112

File Locking

* File locking ensures ordered access to a file

* PHP’s locking module is collaborative
= Every application that accesses the file must use it

* Locks can be shared or exclusive
= $lock = ($file, $lockType, &$wouldBlock);
= $lockType: LOCK_SH, LOCK_EX
= Torelease alock: LOCK_UN
= To prevent blocking, OR with LOCK_NB

e Several limitations:

= Doesn’'t work on most networked filesystems, or on FAT
(WIin98)
= Sometimes implemented per-process

Oct. 18, 2005 113

More File Fun

* Some useful file functions
o file():
= Reads an entire file in memory, splits it along newlines

* readfile():
= Reads an entire file, outputs it

* fpassthru():
= Same as readfile(), but works on file pointer and
supports partfial output
* file_get _contents():
= Reads entire file in memory

= Remember that file_put_contents() is a PHP 5-only
function!

Oct. 18, 2005 114

PHP and E-mall

* PHP supports sending of e-mail through the
mail() function
= Contrary to popular belief, it's not always available

= Relies on sendmail in UNIX, implements its own
wrappers in Windows and Netware

= Built-in wrappers do not support authentication

= The from address is set automatically under Linux
(ohp_user@serverdomain), must be set in PHP.ini under
Windows

Oct. 18, 2005 115

E-mail — The mail() Function

* The mail() function accepts five parameters:
= mail ($to, $subject, $body, $headers, $extra)
* mail() provides a raw interface to sending mail
= No support for attachments
= No support for MIME
= No support for HTML mail

* Extra headers can be set, including overriding
the default From:

= On UNIX machines, this may require setting -f in $extra

= This may not work if PHP user is not “trusted” by
sendmail

Oct. 18, 2005 116

E-mail — MIME

* E-mail only supports 7-bit ASCII

= Good for anglophones, not so good for the rest of the
world

= MIME provides support for sending arbitrary data over
e-mail
= MIME is supported by most MUAS, although often the
target of spam filters
* MIME headers also define the type of data that is
being sent as part of an e-mail:

= For example, HTML:

* "MIME-Version: 1.0\r\n".
"Content-Type: text/html; charset=\"iso-885%-1\"\r\n" .
"Content-Transfer-Encoding: 7bit\r\n"

Oct. 18, 2005 117

E-mail — MIME and Multipart

* Multipart e-mails make it possible to send an e-
mail that contains more than one “part”

= "MIME-Version: 1.0\r\n" .
"Content-Type: multipart/alternative;\r\n" .
" boundary=\"{$boundary}\"\r\n";

= Examples:
 HTML and Text bodies (plain-text should go first)
* Attachments
* Most clients support multipart—but for those who
don’t, you always provide a plain-text message
at the beginning

= YIf you are reading this, your client is too old!”

Oct. 18, 2005 118

E-mail — MIME and Multipart

* The different parits are separated by a unique
boundary

= $message .="--". $boundary . "\r\n" .
"Content-Type: text/plain; charset=us-ascii\r\n" .
“Content-Transfer-Encoding: 7bit\r\n\r\n" .
"Plain text" .
"\'\n\r\n--". $boundary . "--\r\n";

= Note the two dashes before each boundary, and after
the last boundary

* Binary attachments must be encoded:

= "Content-Transfer-Encoding: baseé4\r\n" .
‘Content-disposition: attachment; file="l.gif " \r\n\r\n"

= baseb4_encode ($file);

Oct. 18, 2005 119

E-mail — Getting a handle

* It's impossible to know whether an e-mail was
successfully sent

= mail() only returns a success/failure Boolean for its end
of the deadl

= E-mail can get lost at pretty much any point in the
tfranmission process

= The mail protocol does not have a thoroughly-
respected feedback mechanism

Oct. 18, 2005 120

Q&A Time

* Which function(s) retrieve the entire contents of
a file in such a way that it can be used as part of
an expression?

e What does the built-in delete function do?

* Which MIME content type would be used to send
an e-mail that contains HTML, rich text, and plain
text versions of the same message so that the e-
mail client will choose the most appropriate
version?

Oct. 18, 2005 121

ANswers

e Which function(s) retrieve the entire contents of
a file in such a way that it can be used as part of
an expression?

* file_get_contents()
o file()

Oct. 18, 2005 122

ANswers

e What does the built-in delete function do?

* |t doesn’t exist!
* Use unlink() instead

Oct. 18, 2005 123

ANswers

* Which MIME content type would be used to send
an e-mail that contains HTML, rich text, and plain
text versions of the same message so that the e-
mail client will choose the most appropriate
version?

* multipart/alternative

= segment which contains sub-segments representing
multiple versions of the same content

Oct. 18, 2005

124

* What we’ll cover in this section:
= Databasics
= |ndices and keys
= Table manipulation
= Joins
= Aggregates
= Transactions
= File wrappers
= Streams

Oct. 18, 2005

125

Databasics

* The exam covers databases at an abstract level
= No specific implementation
= SQL-92 standards only

* Only the basics of database design and
programming are actually required

= Table creation/population/manipulation
= Data extraction

= Reference integrity
= Joins / Grouping / Aggregates

Oct. 18, 2005

126

Databasics

e Relational databases

= Called because the relationship among different
entities is its foundation

e Schemas/databases
e Tables

* Rows
= Data types
° Int

* Float
e Char/varchar
* BIOBs

Oct. 18, 2005 127

Indices

* Indices organize data
= Useful to enforce integrity
= Essential fo performance

* Indices can be created on one or more columns
= More rows == bigger index
= Columns that are part of indices are called keys

* Indices can be of two types: unique or not
unique
= Unique indices make it possible to ensure that no two
combination of the same keys exist in the table

= Non-unigue indices simply speed up the retrieval of
information

Oct. 18, 2005 128

Creating Schemas and Tables

e Schemas are created with CREATE DATABASE:
= CREATE DATABASE dafabase _name

e Tables are created with CREATE TABLE:

= CREATE TABLE table_name |
columnli columnl_type,

...
* Table names are unique
= This is frue on a per-schema basis

e Each table must contain at least one column

= Most DBMSs implement some sort of limits to the size of
a row, but that is not part of the standard

Oct. 18, 2005 129

Creating Indices

* Indices are created using CREATE INDEX:

= CREATE [UNIQUE] INDEX index_name |
columnl,

o)
* Index names must be unique
= On a per-schema basis

* Primary keys are special unique indices that
indicate the “primary” method of accessing a
table

= There can only be one primary key per table

= Generally, the primary key indicates the way the data
is physically sorted in storage

Oct. 18, 2005 130

Creating Good Indices

* A good index provides maximum performance
at minimum cost
= Create only indices that reflect database usage

= |Implement the minimum number of columns per index
= Create as few indices as possible

* Many DBMSs can only use one index per query
= Make sure you understand how your DBMS uses indices

= Analyze, analyze, analyze
= Continue analyzing once you're done!

Oct. 18, 2005 131

Foreign Keys

* A foreign key establishes a relationship between
two tables:
= CREATE TABLE A (ID INT NOT NULL PRIMARY KEY)
= CREATE TABLE B (A_ID INT NOT NULL REFERENCES A(ID))

* Foreign keys enforce referential integrity

= They ensure that you cannot add rows to table B with
values for A_ID that do not exist in table A

= |t also ensures that you cannot delete from table A if
there are TABLE B rows that still reference it
e Some DBMSs do not support foreign keys
= Notably, MySQL until version 5.0

Oct. 18, 2005 132

Zend 05

pPhp

Inserting, Updating and Deleting

* Rows are inserted in a table using the INSERT
INTO statement:
= INSERT INTO TABLE A (ID) VALUES (123)
= INSERT INTO TABLE A VALUES (123)

* Updates are performed using UPDATE:
= UPDATE A SETID = 124

* Deletions are performed using DELETE:
= DELETE FROM A
* Both additions and deletion can be limited by a

WHERE clause:
= UPDATE A SETID = 124 WHERE ID = 123

Oct. 18, 2005 133

Retrieving Data

* Datais retrieved using the SELECT FROM
statement:
= SELECT * FROM A
= SELECTID FROM A

o SELECT statements can also be limited by a
WHERE clause
= SELECT * FROM A WHERE ID = 123
= SELECT ID FROM A WHERE ID = 123
= Where clauses are what makes indices so important

Oct. 18, 2005 134

* A join makes it possible to... join fogether the
results from two tables:

= SELECT * FROM A INNER JOIN B ON A.ID =B.A_ID

* |Inner Joins require that both tables return rows
for a particular set of keys

e OQOuter Joins require that either table return rows
for a particular set of keys

= SELECT * FROM A LEFT JOIN B
ON A.ID =B.A_ID

= SELECT A.ID, B.* FROM A RIGHT JOIN B
ON A.ID =B.A_ID

Oct. 18, 2005 135

* Joins don’t always work the way you expect
them to

= SELECT * FROM A INNER JOIN B
WHERE A.ID <> B.A_ID

= This won't refurn a list of the rows that A and B do not
have in common

= |t will return a list of all the rows that each row of A
does not have in common with B!

e Joins also rely on indices

* Joins can be stacked, and they are executed
from left to right

Oct. 18, 2005 136

Grouping and Aggregates

* The GROUP BY clause can be used to group
return sets according to one or more columns:
= SELECT A_ID FROM B GROUP BY A_ID

* Grouped result sets can then be used with
aggregates to perform statistical analysis on
data:

= SELECT A_ID, COUNT(A_ID) FROM B GROUP BY A_ID

* When using GROUP BY, only aggregates and
columns that appear in the GROUP BY clause
can be exiracted

= This is the standard, but it's not always respect (notably
by MySQL)

Oct. 18, 2005 137

Aggregaftes

e Sum of all rows
= SUM(column_name)

e Count of rows returned
= COUNT(column_name)
= COUNT(*)

* Arithmetic average:
= AVG(column_name)

°* Maximum / minimum
= MAX (column_name)
= MIN (column_name)

* Not all aggregates can be sped up by proper
indexing

Oct. 18, 2005

138

Nelgilgle

* Result sets can be sorted using the ORDER BY
clause

= SELECT * FROM A ORDER BY ID
* This is superfluous — ID is the primary key!

= SELECT * FROM A ORDER BY ID DESC
= SELECT * FROM B ORDER BY A_ID DESC, ID

» Sorting performance is affected by indexing

Oct. 18, 2005 139

Transactions

* Transaction create atomic sets of operations that
can be committed or rolled back without any
chaange to the underlying data

= BEGIN TRANSACTION
DELETE FROM A
DELETE FROM B
ROLLBACK TRANSACTION

= BEGIN TRANSACTION
UPDATE A SET ID = 124 WHERE ID = 123
UPDATE B SET A_ID = 124 WHERE ID = 123
COMMIT TRANSACTION

* Not all DBMSs support transactions
= For example, MySQL only supports them with InnoDB

Oct. 18, 2005 140

SQL and Dates

* Most DBMSs can handle dates much better than
PHP
= Extended range
= Higher resolution

* Therefore, you should keep all date operations
within your DBMS for as long as possible

Oct. 18, 2005

141

File Wrappers

* File wrappers extend PHP’s file handling

= use fopen(), fread() and all other file functions with
something other than files

= For example, access HTTP, FTP, ZLIB and so on

e Built-in wrappers, or your own

= Simply define your own wrapper class:

e class wrap {
function stream_open($path, $mode, $options, &$opened_path) {}
function stream_read($count) {}
function stream_write($data) {}
function stream_tell() {}
function stream_eof() {}
function stream_seek($offset, $whence) {}
}
stream_wrapper_register("wrap", "wrap"); // register wrapper
$fp = fopen("'wrap://some_file", "r+"); // open file via new wrapper

Oct. 18, 2005 142

File Wrappers

* Not all file wrappers support all operations
= For example, HTTP is read-only

* Remote file access may be turned off
= Use the allow_furl_open PHP.INI directive

e Some wrappers are write-only
= For example: php://stdout and php://stderr

* Some wrappers do not support appending
= For example ftp://

* Only the “file://” wrapper allows simultaneous
read and write operations

Oct. 18, 2005 143

File Wrappers

* File wrappers support information retrieval via
stat() and fstat()

= This is only implemented for file://

= Remember, however, that SMB and NFS files are “local”
as far as the operating system is concerned

* Deleting and renaming is also supported
= Renaming only supported for local file (but see above)
= Both require write access

* You can also access and manipulate directories
= Supported only for local files

* Remember to close unused wrapper instance
= Not necessary, but often a good idea

Oct. 18, 2005 144

Streams

* Sireams represent access to network services
= File wrapper
= One or two pipelines
= Context
= Metadata

* Pipelines
= Established to allow for the actual streaming of data
= Can be one only (read or write) or two (read and

write)
e Context

= Provides access to advanced options
* For example, under HTTP you can set additional headers

Oct. 18, 2005 145

Streams

* Metadata
= Contains “out-of-band” information provided by the
sfream
* print_r(stream_get_meta_data(fopen("http://www.php.net", 'r")));
/* Array (

[wrapper_data] => Array (
[0] => HTTP/1.1 200 OK
[1] => Date: Wed, 25 Aug 2004 22:19:57 GMT
[2] => Server: Apache/1.3.26 (Unix) mod_gzip/1.3.26.1a PHP/4.3.3-dev
[3] => X-Powered-By: PHP/4.3.3-dev
[4] => Last-Modified: Wed, 25 Aug 2004 21:12:17 GMT
[5] => Content-language: en
[8] => Content-Type: text/html;charset=ISO-8859-1
)
[wrapper_type] => HTTP
[stream_type] => socket
[unread_bytes] => 1067
[timed_out] =>
[blocked] => 1
[eof] =>

Oct. 18, 2005 146

* Sockets provide the lowest-level form of network
communication

= Because of this, you should use them only when strictly
necessary
» Several fransports are supported:
= TCP/UPD
= SSL
= TLS
UNIX
= UDG

* You can’t switch transports mid-stream
= Sometimes problematic for TLS

Oct. 18, 2005

147

* Opening:
= $fp = fsockopen ($location, $port, &$errno, &$errstr)

You can then use fwrite, fread(), fgets(), etc.

* Opening persistend sockets:

$fp = pfsockopen ($location, $port, &$errno, &$errstr)

Persistent sockets will only work for persistent APIs, like
mod_php on Apache and FastCGl

Connections can also be terminated from the remote
host because of lack of network activity

Use with care—lofts of potential pitfalls!

Oct. 18, 2005

148

Socket Timeout

* An optional fifth parameter to fsockopen()
indicates timeout
= $fp = fsockopen("'www.php.net", 80, $errno, $errstr, 30);
= Timeout is in seconds

= Default is stored in default_socket timeout PHP.INI
setfing

* Timeout must be set separately for network
activity:
= socket_set_timeout ($socket, $timeout)
* Sockets can be blocking or non-blocking

= stream_set_blocking ($socket, FALSE);
= This needs a pre-existing socket!

Oct. 18, 2005 149

Q&A Time

* What does an “inner join” construct do?

* What function would you use to open a socket
connection manually with the purpose of
communicating with a server not supported by a
file wrapper?

* When dealing with fimeout values in sockets, the
connection timeout can be changed
independently of the read/write time out. Which
function must be used for this purpose?

Oct. 18, 2005 150

ANswers

* What does an “inner join” construct do?

* It creates aresult set based on the rows in
common between two tables

Oct. 18, 2005 151

ANswers

* What function would you use to open a socket
connection manually with the purpose of
communicating with a server not supported by a
file wrapper?

* fsockopen()
* pfsockopen() for persistent connections

Oct. 18, 2005 152

Zend 05

pPhp

ANswers

* When dealing with fimeout values in sockets, the
connection timeout can be changed
independently of the read/write time out. Which
function must be used for this purpose?

* stream_set_timeoui()

Oct. 18, 2005 153

e What we'll cover in this section:

Data filtering

SQL injection

Command injection

XSS

Safe mode

Coding Standards

Error logging

Debugging and optimization

Oct. 18, 2005

154

Data Filtering

e Users are evil
= And sometimes they don’t even know it

* You should always “taint” and filter data
= PHP provides lots of functions that can help here

= Never rely on register_globals

* In fact, if you're writing for redistribution, undo its effects if
it is on

* Data filtering depends on what you need to do
with it
= You will rarely need “raw” data

= Most of the time, it needs to be escaped to do
something or other—e.g.: display, insert into db, and so
on

Oct. 18, 2005 155

SQL Injection

* SQL injection occurs when improperly filtered
data ends up in a database query
= “SELECT * FROM USER WHERE ID = $id”
= $id = “1; DELETE FROM USER;”

* Most DBMS modules have their own escaping

mechanisms
= mysql_real_escape_string()
= addslashes() — The swiss army knife approach

Oct. 18, 2005 156

Command Injection

e Command injection takes place when
improperly filtered input ends up in a shell
command

e Both commands and parameters should be
escaped:
= escapeshellemd ($cmd)
= escapeshellarg ($arg)
= shell_exec ($cmd . * ‘. $arg)

Oct. 18, 2005 157

Cross-site Scripting

e XSS happens when improperly escaped input is
outpuited to the client
= XSS can be used for all sorts of nasty purposes

= Often underrated, it is an extremely serious security
problem

= |t's often easy to implement on the attacker’s side

* User input should be properly escaped before
being outpuited back to the browser
= htmlspecialchars()
= htmlentifies()
= strip_tags()

Oct. 18, 2005 158

Safe Mode

* Safe mode implements certain restrictions to
help prevent security problems
= UID matching
= open_basedir restrictions

* Safe mode and open_basedir have several
drawbacks

= PHP is not the right place for implementing security at
this level

= Files created in safe_mode may not be readable by
your scripts!

= Add noficeable overhead to the system

Oct. 18, 2005 159

Coding Standards

e Coding standards help writing good code

There is no “official” standard connected with the
exam

e A fewideas:

Flattening if statements
Splitting long statements across multiple lines

Using substitution instead of concatenation
* Watch out for performance hits

Comparison vs. Assignment

* Reverse comparisons
Use type-sensitive comparisons when possible
Validate resources

Oct. 18, 2005

160

Error Management

* PHP has an impressive array of error
management facilities—use them!

e Report all errors during development

e Keep error reporting on in production, but shift to
logging
* Implement your own error handlers

Oct. 18, 2005 161

Debugging

* Debugging can be very difficult

* “Echo” debugging is the simplest form
= Qutput status throughout the script’s execution

* Complex logic is better handled through
external debuggers

= Lots available—from open source (Xdebug) to
commercial (e.g.: Zend Studio IDE)

= |DEs support both local and remote debugging

Oct. 18, 2005 162

Optimization

* Optimization can be as simple as installing a
bytecode cache
= No changes to codebase
* |[mmediate (but limited) benefits

* Proper optimization requires good analysis
= Finding bottlenecks

* Optimization can take place on multiple levels:
= Write faster code
= Remove external bottlenecks
= Use caching for internal bottlenecks
= |mprove web server configuration

Oct. 18, 2005 163

Q&A Time

* Although the best practice is to disable
register_globals entirely, if it must be enabled,
what should your scripts do to prevent malicious
users from compromising their security?

* When uploading a file, is there a way to ensure
that the client browser will disallow sending a
document larger than a certain size?

e Can you turn off all error reporting from within a
script with a single PHP function call?

Oct. 18, 2005 164

ANswers

* Although the best practice is to disable
register_globals entirely, if it must be enabled,
what should your scripts do to prevent malicious
users from compromising their security?

e Filter all data
e |nitialize all variables

Oct. 18, 2005

165

ANswers

* When uploading a file, is there a way to ensure
that the client browser will disallow sending a
document larger than a certain size?

* No.

= You can check a file size afterit’s been uploaded
= The server can ignore files above a certain size

= But you can't prevent the user from frying to send the
data across the network

Oct. 18, 2005 166

ANswers

e Can you turn off all error reporting from within a
script with a single PHP function call?

* No.
= error_reporting() will not silence parse errors

Oct. 18, 2005 167

Conclusion

* A few quick words about the exam

* Pay close attention to the code

= Pay close attention to the code
= Are you paying close attention yete?¢?

e You have 90 minutes—use them all

* Use the booklet to mark your questions before
you transfer them over to the answer sheet

* Remember that you're working with PHP 4, not
PHP 5—and 4.3, not 4.4!

* Don’t forget to sign up for your exam at the
registration desk

Oct. 18, 2005 168

