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Welcomel

e A few words about me

* A few words about what we’ll be covering
= This is not a PHP tutoriall
= | expect that you already have some PHP experience
= Goals of this tutorial
= Structure
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A bit about the exam

* We'll talk about the exam proper at the end of
the tutorial

* The exam covers only PHP 4 — not PHP 5

* If you are taking the exam here, it will be on
paper, not on a computer

* The exam tests your knowledge of PHP, not your
knowledge of programming

Oct. 18, 2005 3



Part | - The PHP Language

* What we’ll cover in this section:
= PHP Tags
= File inclusion
= Data types & typecasting
= Variables and constants
= Operators
= Conditionals
= |teration
= Functions

= Objects
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* Tags “drop” you out of HTML and into PHP mode

* PHP recognizes several types of tags:

Short tags: <¢ ¢>

Special tags: <¢= 2>

Regular tags: <¢php ¢>

ASP tags: <% %>

HTML script tags: <script language="PHP"> </script>
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File Inclusion

* External files can be included in a script using
either include() or require()

* Both are constructs, not functions:
= include (‘myfile.php’); or include ‘myfile.php’;
* They behave in exactly the same way, except
for how they handle failure
= include generates a warning

= require throws an error

= Upon inclusion, the parser “drops off” of PHP mode
and enters HTML mode again

e Variants: include_once()/require_once()
= Prevent multiple inclusions from within the same script
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Data Types

* PHP is not a typeless language
* |t supports many different data types
* |tis loosely typed

* The interpreter automatically “juggles” data
types as most appropriate

* “Most appropriate” doesn’t necessarily mean
always appropriate
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Data Types — Numeric/Boolean

* PHP recognizes two types of numeric values:
= Integers
= Floats

* Boolean values are used for logic operations

= True / False
= Easily converted to integers: non-zero / zero

* Result type of operations depends on types of
operands

= For example: int + int == Int — int / float == float
int / int == int or float

* Numbers can be specified in a number of ways:
= Decimal (123), Hexadecimal (0x123) and Octal (0123)
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Data Types — Strings

o Strings are heterogeneous collections of single-
byte characters
= They don't necessary have to be text

= They can represent Unicode as well, but cannot be
manipulated by the standard PHP functions

* PHP supporis three ways of declaring strings:
= Single quotes: ‘test 12 3’
= Double quotes: “test 1 2 3\n"
= Heredoc syntax: <<<EOT test 123
EOT,;
* Main differences:

= Support for variable substitution / escape sequences
= All strings support newline characters
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Data Types — Arrays

* Arrays are ordered siructures that map a key to
a value

* Values can be of any type—including other
arrays

* Keys can be either integer numeric or strings
= Keys are unigque
= Negative numbers are valid keys
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Data Types — Resources / Null

* Resources are special containers that identify
external resources

= They can only be operated on directly as part of
logical operations

= They are usually passed to C-level functions to act on
external entities

= Examples: database connections, files, streams, etc.

* NULL is a special value that indicates... no valuel
= NULL converts to Boolean false and Integer zero
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Data Types — Objects

* Objects are containers of data and functions

The individual data elements are normally called
properties

The functions are called methods

Individual members (methods / properties) of an
object are accessed using the -> operator

We'll cover objects in more depth later in this section
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Typecasting

e PHP’s ability to juggle among different data
types is not entirely dependable

* There are circumstances in which you will want
to control how and when individual variables
are converted from one type to another

* This is called Typecasting
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Typecasting — Integers

* You can typecast any variable to an integer
using the (int) operator:
= echo (int) “test 1 2 3";

* Floats are automatically truncated so that only
their integer portion is maintained
= (int) 99.99 == 99
* Booleans are cast to either one or zero:

= (int) TRUE == 1 — (int) FALSE ==
» Strings are converted to their integer equivalent:
= (int) “test 123" ==0, (int) “123" == 123

= (int) "123test” == 123 // String begins with integer
* Null always evaluates to 0
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Typecasting — Booleans

* Datais cast to Boolean using the (bool)
operator:
= echo (bool) “17;
* Numeric values are always TRUE unless they
evaluate to zero
o Strings are always TRUE unless they are empty
= (bool) “FALSE" == frue

* Null always evaluates to FALSE
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Typecasting — Strings

Data is typecast to a string using the (string)
operator:

= echo (string) 123;

Numeric values are converted to their decimal

string equivalent:
= (string) 123.1 == “123.1™;

Booleans evaluate to either “1” (TRUE) or an
empty string (FALSE)

NULL evaluates to an empty siring

Numeric strings are not the same as their integer
or float counterparts!
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Typecasting — Arrays / Objects

e Casting a non-array datum to an array causes a
new array to be created with a single element
whose key is zero:

= var_dump ((array) 10) == array (10);

e Casting an object to an array whose elements
correspond to the properties of the object
= Methods are discarded

e Casting a scalar value to an object creates a
new instance of stdClass with a single property
called “scalar”

= Casting an array to an object create an instance of
stdClass with properties equivalent to the array’s
elements

Oct. 18, 2005 17



ldentifiers / Variables / Constants

* |dentifiers are used to identify entities within a
script

= |dentfifiers must start with a letter or underscore and

can contain only letters, underscores and numbers

* Variables
= Containers of data
= Only one data type at any given fime
= Variable names are case-sensitive identifiers prefixed
with a dollar sign ($my_var)
= Variables can contain references to other variables

* Constants
= Assigned value with declare(), cannot be modified

= User-defined constants are not case-sensitive
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Substitution / Variable variables

* Variables can be substituted directly within a
double-quoted or Heredoc string
= $a=10;
echo “\$ais: $a”; // Will output $ais: 10
e Variables values can be used to access other
variables (variable variables):
n $Q — “b”;
$b =10;
echo $%$a; // will output 10
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Statements

* Statements represent individual commands that
the PHP interpreter executes
= Assignment: $a = 10;
= Construct: echo $q;
= Function call: exec ($a);

e Statements must be terminated by a semicolon

= Exception: the last statement before the end of a PHP
block
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Operations

* PHP supports several types of operations:
= Assignment
= Arithmetic
= Bitwise
= String
= Comparison
= Error control
= Logical

Oct. 18, 2005
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Operations — Assignment

* The assignment operator ‘=" makes it possible to
assign a value to a variable
= $a=10;
* The left-hand operand must be a variable

= Take advantage of this to prevent mistakes by
“reversing” logical operations (as we'll see later)

= 10 = $aq; // Will output error
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Operations — Arithmetic

* These operators act on numbers and include the
four basic operations:

= Addition: $a + $b
= Subftraction: $a - b
= Multiplication: $a * $b
= Division: $a/ $b

* Remember that dividing by zero is illegal

* They also include the modulus operator

= Determines the remainder of the integer division
between two numbers: 10 % 4 = 2

= Unlike proper modulus, PHP allows a negative right-
hand operand

* 10%-4=2
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Operations — Bitwise

* Bitwise operations manipulate numeric values at
the bit level
= AND (&) —set bitif it is set in both operands
e 1 &0==
OR (|) —set bitifisis set in either operand
] |0==
XOR (A) — set bit if it is set in either, but not both
e 1A ==
NOT — invert bits
o ~0 ==-
Shift left/right (<</>>) - shift bits left or right

° '|<<2::4::8<<]

* Excellent shortcuts for infeger multiplications by powers of
two
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Operators — Combined

* Numeric and bitwise operators can be
combined with an assignment:
= $a +=10is equivalent to $a = $a + 10;
* This does not apply to the NOT operator, since
it’'s unary
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Operators — Error Conftrol

* PHP support several different levels of errors

* Error reporting can be tweaked either through
PHP.INI settings or by calling error_reporting().

* Remember that the exam assumes the default
“recommended” INI file
= Warning and Notices are not reported!

* Error reporting can be controlled on a
statement-by-statement basis using the @
operator:

= @fopen ($fileName, “r");

= This only works if the underlying functionality uses PHP's
facilities to report its errors
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Operators — Inc/Dec and String

* Incrementing and decrementing operators are
special unary operators that increment or
decrement a numeric variable:

= Postfix: $a++

= Prefix: ++$a

= You cannot perform two unary operations on the same
variable at the same time— ++%$a-- will throw an error

* The only string operation is the concatentaion
(.), which “glues” together two strings into a third
one

=Yg’ 'b'=="ab’
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Operators — Comparison / Logical

e Comparison operators are used to compare
values:
= Equivalence: == I=

* Equivalence operators do not require either of their
operands to be a variable

= |dentity: === ==
= Relation: <, <=, >=, >
* Logical operators are used to manipulate
Boolean values:
= AND (&&) — TRUE if both operands are TRUE

= OR (| ])—TRUEIf either operand is TRUE
= XOR (xor) — TRUE if either operand is TRUE, but not both
= NOT () — Reverses expression
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Operator Precedence

* The precedence of most operators follows rules
we are used to—but not all of them
= Example: “test " . 1+ 10.“ 123" ==*1 123"

* There are two variants of logical operators

= The “letter” operators AND, OR differ from their
“symbol” equivalents &&, | | in the fact that they have
lower precedence
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Conditionals — if-then-else

e Conditionals are used to direct the execution
flow of a script
= if (condifion) {

... Statements ...
} else {

... Statements ...

}
e Alternative short form:
= $a = (cond) ¢ yesvalue : novalue;
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Conditionals — case/switch

* Case/switch statements allow you to verify a
single expression against multiple expressions:

= switch (expr) {
case exprl :
... Statements ...
break;

case expr2:
... Statements ...
break;

default:
... Statements ...
break;

}
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lterators — While

* While loops are the simplest form of iterator; they
allow you to repeat a set of statements while a
condition evaluates to TRUE:

= while (expr) {

... statements ...
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lterators — Do...while

* Do...while loops are equivalent to while loops,
but the condition is evaluated at the end of the
loop, instead of the beginning:

= do{

... statements ...
} while (expr);

= This means that the statement block is executed at
least once
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lterators — For and Foreach

* While and do...while are the only indispensible
iterators in any language.

* For convenience, PHP includes for loops:

= for (inifial; condition; incremental) {
... sStatements ...

}
* Foreach loops can be used to iterate through an
aggregate value:
= foreach ($array as $k => $v) {
... Statements ...

}

= Important: $k and $v are assigned by value!
= Works on objects, too!

Oct. 18, 2005
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lterators: continuing/breaking

* Loops can be continued using the continue

construct:
= while ($a == 1) {if ($b == 2) continue; }
* Loops can be interrupted using the break
construct:
= while ($a == 1) {if ($b == 2) break; }
* Multiple nested loops can be continued/broken
at once:

= continue 2;

= Remember the semicolon at the end of the break or
continue statement!
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Functions

e Functions allow for code isolation and reuse

= function myfunc (&$argl, $arg2 = 10)
{

global $variable;

... Statements ...

}

echo myfunc (10);
* Pay attention to variable scopel!

* Functions can support variable parameters:
= func_num_args();
= fung_get_arg();
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OQOP: Classes and Objects

* Classes define the structure of objects:

= class myClass {
var $myVar;

function myClass() { // constructor
$this->myVar = 10;
}
* Objects represent individual instances of a class:
= $a = new myClass;
$a->myVvar=11;
* Objects support dynamic methods and
properties:
= $obj->$var();
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OOP: Classes as Namespaces

* PHP does not support namespaces (this is frue
also of PHP 5), but classes can simulate their
behaviour:

= class class encode {
function baseé4($str)

{

return baseé4_encode($str);

}
}

echo encode::baseé4("'my string");
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OOP: Objects and References

* In PHP 4, objects receive no special treatment:
they are essentially arrays with embedded
functions

= This means that references to objects must be handled
with care.

* Passing/assigning an object is normally done by
value, not by reference, even when using new
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OOP: Objects and References

* The Sthis special variable cannot be passed by
reference, even if you use the & operator

= However, you can embed $this in a global array and
circumvent this problem (albeit in a horrible way):

* class obj {
var $prop;
function obj($arg)
{
global $obji; // import variable into local scope
$obiji[] = $this; // get a copy of current class
$this->prop = $arg;
}
}
$obj = new obj(123);
var_dump ($obj->prop = $obiji[0]->prop); // FALSE
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OOP: Inheritance

* |Inheritance makes it possible to create classes
(“subclasses”) that are based on other classes
(“superclasses’):

= class base {
function base()

{
}
}

class main extends base {
function main()

{

parent::base();

}
}
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OQOP: Object Serialization

» Serialization is the process of reducing an
aggregate (array or object) to a scalar (string)

» Serialization is a mostly automatic process, but
for objects it is possible to exercise a certain
amount of control:

= _ sleep|)
= _ wakeup()

= Useful for dynamically-generated properties, such as
database connections and file descriptors

= Classes must be declared before their instances are
unserialized
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Q&A Time

* What is the difference between print and echo?

* Under what circumstance is it impossible to

assign a default value to a parameter while
declaring a function?

* How does the identity operator === compare
two values?
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ANswers

* What is the difference between print and echo?

e echois a construct
e printis a function
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ANswers

* Under what circumstance is it impossible to
assign a default value to a parameter while
declaring a function?

* Always, as long as the parameter is not being
passed by reference
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ANswers

* How does the identity operator === compare
two values?

* |t first compares the type, then the value
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Part Il — Strings and Arrays

e What we'll cover in this section:

Comparisons

Basic search and replace

Regular Expressions

String functions and formaftting
Accessing arrays

Single- and multidimensional arrays
Array iteration

Array sorting

Array functions and manipulation
Serialization

Oct. 18, 2005
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String Comparison

o String comparison is mostly ftrivial, but can
sometimes be tricky

= The equivalence operator should be used when you
know that you are comparing two strings—or when
you don't care about cases like this:
o "123test” == 123 == TRUE!

= The identity operator should be otherwise used every
time you know that you want to compare two strings
without letting PHP juggle types

* PHP also provides function-based comparison:
= stremp()
= strcasecmp()
= strncmp() and strncasecmp()
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Basic String Searching

o strsir() (aliased into strchr()) determines whether
a substring exists within a string:
= strstr ("PHP is a language”, "PHP") == true
= stristr() provides a case-insensitive search

* strpos() will return the location of a substring
inside a string, optionally starting from a given
position:

= strpos ($haystack, $needle, $pos)
= Beware of zero return values!
= There is no stripos() in PHP 4!

* Reverse search is done with strrchr() / strrpos()

Oct. 18, 2005
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Counting Strings

* The length of a string is determined with strlen()
= Do not use count()!

* You can count words inside a string using
str_word_counti():
= str_word_count ($str, $n);
= $n == 1 — Returns array with words in order
= $n == 2 — Returns array with words and positions

* substr_couni() can be used to count the number
of occurrences of a given substring:
= substr_count (“phpphpPHP”, “php”) ==
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Formartting Strings

* Most of the time, strings can be formatted using
a combination of concatenations

* |[n some cases, however, it is necessary to use
special functions of the printf() family
= printf() — outputs formatted strings to STDOUT
e printf (“*%d", 10);
= sprintf() — returns the formatted string
o $a = sprintf (“%d", 10);
= fprintf() — outputs formatted strings to a file descriptor
o fprintf ($f, “%d", 10);
= vprintf(), vsprintf() — take input from array
o vprintf (“%d"”, array (10));
e $a = vsprintf (“%d", array (10));

Oct. 18, 2005 51



Formartting Strings

* % - a literal percent character.

* b -integer presented as a binary number

* ¢ —integer (ASCII value)

* d -integer (signed decimal number)

* e — number in scientific notation (Ex. 1.2e+2)
* U -integer (unsigned decimal number)

* f-float as a floating-point number.

* o -integer (octal number).

* s —string

* x - hexadecimal number (lowercase letters).

* X -hexadecimal number (uppercase letters).
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Accessing Strings as Arrays

* You can access individual characters of a string
as if it were an array
= $s="12345";
echo $s[1]; // Outputs 2
echo $s{1}; // Outputs 2
= This works for both reading and writing

= Remember that you cannot use count() to determine
the number of characters in a string!
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Extracting and Replacing

* Substrings can be exiracted using the subsir()
function:
= echo substr (“Marco’”, 2, 1); // Outputsr
= echo substr (“Marco”, -1); // Outputs o
= echo substr (“Marco”, 1, -1); // Outputs arc

e Substrings can be replaced using substr_replace
():
= substr_replace (‘Marco’, ‘acr’, 1, -1) == “Macro”
* The sscanf() function can be used to exiract
tokens formatted a la printf() from a string:

= sscanf(“ftp://127.0.0.1", "%3c://%d.%d.%d.%d:%d");
= Returns array (‘ftp’, ‘127°, '0’, '0’, ‘'1");
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Multiple Replacements

» str_replace() replaces instances of a substring
with another:
= str_replace (“.net”, “arch”, "php.net”) == "phparch”

* You can perform multiple replacements by
passing arrays to sir_replace():

= str_replace(array('‘apples’, '‘applesauce’, 'apple’),
array(‘oranges’, 'orange-juice’, 'cookie'),
“apple apples applesauce’)

= Returns “cookie oranges orangesauce”
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PCRE — Perl Regular Expressions

* Perl Regular Expressions (PCRE) make it possible
to search (and replace) variable patterns inside
a string

e PCRE is usually fast and simple to understand,
but it can also be complicated or slow (or both)

* Regular expressions are matched using the
preg_match() function:
= preg_match ($pcre, $search, &$results)
= preg_match_all ($pcre, $search, &Iresults)

* Search-and-replace is performed using
preg_replace():
= preg_replace ($pcre, $replace, $search)
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PCRE — Meta Characters

* Meta characters are used inside a regex to
represents a series of characters:
= \d — digits 0-9
= \D — not a digit
= \w — alphanumeric character or underscor
= \W — opposite of \w
= \s — any whitespace (space, tab, newline)
= \S — any non-whitespace character
= . — any character except for a newline

* Meta characters only match one character at a time (unless
an operator is used to change this behaviour)
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PCRE — Operators / Expressions

* PCRE operators indicate repetition:
= ¢2—0orltime
= *— 0 ormore times
= +— 1 or more times
= {,n} — af more n fimes
= {mM,} — m or more times
= {m,n} — at least m and no more than n times

* Parentheses are used to group patterns
= (abc)+ — means “Yabc” one more times

e Square brackets indicate character classes
= [0-z] means “any character between a and z

= The caret negates a class: [Aa-z] is the opposite of the

expression gabove
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PCRE — An example

* Here’s an example of a PCRE:

= $string = *123 abc’;
preg_match (‘/\d+\s\[a-z]+/*, $string);

preg_match (‘/Aw\s\s/’, $string);

preg_match (‘*\d{3}\s[a-z]{3}'/, $string);
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PCRE — Another Example

* Here’s an example of how to retrieve data from
aregex:

= $email = ‘marcot@tabini.ca”;
preg_match (‘/(\w+)@\w+)\.(\w+)/’);

= Will return array (‘marcot@tabini.ca’, ‘marcot’,
‘tabini’, ‘ca’)
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String Splitffing and Tokenization

* The explode() function can be used to break up
a string intfo an array using a common delimiter:
= explode (., ‘www.phparch.com’);
= Will return array (‘www’, ‘phparch’, ‘com’);
* The preg_split() function does the same thing,
but using a regex instead of a fixed delimiter:
= explode (‘[@.]", ‘marcot@tabini'ca’);
= Willreturn array (‘marcot’, ‘tabini’, ‘ca’);
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Word Wrapping

* The wordwrap() function can be used to break a
string using a specific delimiter at a given length
= wordwrap ($string, $length, $delimiter, $break);
* If the Sbreak parameter evaluates to TRUE, the

break occurs at the specified position, even if it
occurs in the middle of a word
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e Arrays are created in a number of ways:
= Explicitly by calling the array() function
e array (1, 2, 3, 4);
e array (1 =>1, 2, 3, 5=>"test");
e array (“2" =>10, “a” => 100, 30);
= By inifializing a variable using the array operator:
o $x[] = 10;
« $x[-1] = 10;
° $x['a’] =10;
* The couni() function is used to determine the
number of elements in an array

= Executing count() against any other data type
(including objects), it will return 1 (or O for NULL)
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Array Contents

e Array can contain any data type supported by
PHP, including objects and other arrays

* Data can be accessed using the array operator
= $x = $array[10];
* Multiple elements can be exitracted using the list
function:

= $array = (1, 2, 3);
list ($v1, $v2, $v3) = $array
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Array lteration

* It's possible to iterate through arrays in a number

of ways. Typically:
* for (Si = 0; Si < count (Sarray); Si++) // WRONG!
= $cnt = count ($array)
for ($i = 0; $i < $cnt; Pi++)
= Storing the invariant array count in a separate variable
improves performance

* foreach (Sarray as Sk => Sv)

= $k and $v are assigned by value—therefore, changing
them won't affect the values in the array

= However, you can change the array directly using $k:
= $array[$k] = $newValue;
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Array lteration

* You can also iterate through an array using the
internal array pointer:
= $a =array(1,2,3);

while (list($k, $v) = each($a)) {
echo "{$k} => {$v} ";
if ($k % 2) {// add enftry if key is odd
$af] = $k + $v;
}}//O=>1 1=>22=>33=>34=>6
= With this approach, operations take place directly on
the array

* Finally, you can use array_callback() to iterate
through an array using a user-supplied function
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pPhp

Array Keys and Values

* You can check if an element exists in one of two
ways:
= array_key_exists ($array, $key); // Better, but slower

= isset ($array[$key]); // Faster, but has pitfalls
e $a[1] = null;
echo isset ($a[1]);

* You can also check whether a value exists:
= in_array ($value, $array)
* You can extract all the keys and values from an
array using specialized functions:
= array_keys ($array);
= array_value ($array);
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Sorting Arrays

* The sort() and rsori() functions sort an array in-
place
= sort ($array); — rsort ($array)

= Key associafion is lost—you can use asort() and arsort()
to maintain it

* A more “natural” sorting can also be performed:
= natsort ($array);
= natcasesort ($array);

» Sorting by key is also a possibility:
= ksort();
= krsort();
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Array Functions

* Changing key case:
= array_change_key_case ($a, CASE_LOWER)
= array_change_key_case ($a, CASE_UPPER)
* Randomizing the contents of an array:
= shuffle($array)

* Exiracting a random value:
= array_rand ($array, $aty);

Oct. 18, 2005 69



Merge, Diff and Sum

* Merging arrays:

= array_merge ($a, $b[, ...]);

= Later values with the same key overwrite earlier ones
* Diff'ing arrays:

= array_diff ($a, $b[, ...]);

= Returns keys that are not common to all the arrays

= Key association is lost—you can use array_diff_assoc()
to maintain it

* Intersecting:
= array_intersect ($a, $b[, ...]);

e Calculating arithmetic sum:
= array_sum ($array);
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Unigue Array Values

* The array_unique() function retrieves all the
unique array values
= array_unigue ($array)

= Requires traversal of entire array and therefore
hampers performance
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AIrays as stacks or gueue

* The array_push() function pushes a new value at
the end of an array
= array_push ($array, $value)
= Essenfially equivalent to $array[] = $value;
* The array_pop() retrieves the last value from an
array:
= $x = array_pop ($array);
* This allows you to use arrays as if they were
stacks (LIFO)

* You can also pull a value from the top of the
array, thus implementing a queue (FIFO)
= $x = array_shift ($array)
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Serializing Arrays

* like with objects, you can serialize arrays so that
they can be conveniently stored outside your
script:

= $s = serialize ($array);

= $array = unserialize ($s);

= Unserialization will preserve references inside an array,
sometimes with odd results
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Q&A Time

* Given a comma-separated list of values in a
string, which function can create an array of
each individual value with a single call?

* The function can be used to
ensure that a string always reaches a specific
minimum length.

* Which function would you use to rearrange the
contents of the array (‘a’, ‘b’, ‘c’, ‘d’) so that they
are reversed?

Oct. 18, 2005 74



ANswers

* Given a comma-separated list of values in a
string, which function can create an array of
each individual value with a single call?

* explode()
* preg_split() would have also been acceptable
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ANswers

e The function can be used to

ensure that a string always reaches a specific
minimum length.

o str_pad()
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ANswers

* Which function would you use to rearrange the
contents of the array (‘a’, ‘b’, ‘c’, ‘d’) so that they
are reversed?

* rsori()
* array_reverse()
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* What we'll cover in this section:
= HTML form management
= File uploads
= Cookies
= Magic Quotes
= Sessions
= Times and dates in PHP
= Formatting date values
= Locale-dependent date formatting
= Date validation
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HIML Form Management

* HTML forms are submitied by the browser using
either GET or POST
= GET transaction data is sent as part of the query string
= POST data is sent as part of the HTTP transaction itself
= POST is often considered “safer” than GET—WRONG!

* POST data is made available as part of the
S_POST superglobal array

* GET data is made available as part of the S_GET
superglobal array
= Both are “superglobal”—in-context everywhere in your
scripts
= |f duplicates are present, only the ones sent last end up
in the appropriate superglobal
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HIML Form Management

* Element arrays can also be sending by
posifixing the element names with []
= These are transformed into arrays by PHP

= The brackets are discarded
= A very common (and pernicious) type of security
attack
* You can also specify your own keys by placing
them inside the brackets:
= <input type="hidden” name="q(ts]" value="1">

= Willresult in $a['ts’] = 1 being inserted in the
appropriate superglobal
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Uploading Files

* Files are uploaded through a special type of
HTML form:

= <form enctype="multipart/form-data” action="/
upload.php” method="post'"™>
<input type="my_file" type="file" />
<input type="hidden" name="MAX_FILE_SIZE"
value="100000" />
</form>

* An arbitrary number of files can be uploaded at
the same time
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Uploading Files

* Once uploaded, file information is available
through the S_FILES superglobal array

i [my_file] => Array
(
‘'name] => php.gif
type] => image/gif
tmp_name] => /tmp/phpMJLN2g
error] =>0
size] => 4644

)
* Uploaded file can be moved using

move_uploaded._file()
= You can also determine whether a file has been
uploaded using is_uploaded_file()
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Uploading Files

* File uploads are controlled by several PHP.INI
settings:

file_uploads — whether or not uploads are enabled

upload_tmp_dir — where temporary uploaded files are
stored

upload_max_filesize — the maximum size of each
uploaded file

post_max_size — the maximum size of a POST
transaction

max_input_fime — the maximum time allowed to
process a form
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Cookies

* Cookies are small text strings that are stored
client-side

* Cookies are sent to the client as part of the HTTP
response, and back as part of the HTTP headers

* Cookies are notoriously unreliable:
= Some browsers are set not to accept them
= Some users do not accept them

= |ncorrect date/time configuration on the client’s end
can lead to cookies expiring before they are set
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Cookies

* To set a cookie:
= sefcookie ($name, $value, $expires, $path, $domain);
= sefcookie ($name, $value); // sets a session cookie

* Cookies are then available in the S_ COOKIE
superglobal array:
= $ COOKIE['mycookie’]

= $ COOKIE is populated at the beginning of the script.
Therefore, it does not contain cookies you set during
the script itself (unless you update it manually)

e You cannot “delete” a cookie

= You can set it to Null or an empty string
* Remember not to use isset()!

= You can expire it explicitly

Oct. 18, 2005 85



$_REQUEST

 $S_REQUEST is a superglobal populated from
other superglobals
= You have no conftrol over how data ends up in it

= The variables_order PHP.INI setting controls how data is
loaded into it, usually Get -> Post -> Cookie

* Generally speaking, you're better off not using it,
as it is a virtual security black hole.
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Magic Quoftes

* By default, PHP will escape any “special”
characters found inside the user’s input

* You should not rely on this setting being on (as
most sysadmins turn it off anyway)

* You also (and most definitely) should not rely on
it performing proper input filtering for you

* |n fact, supply your own escaping and “undo”
magic quotes if they are enabled!
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Sessions

* Sessions are mechanisms that make it possible
to create a per-visitor storage mechanism on
your site

* Sessions we born—and remain—a hack, so you
can only depend on them up to a certain point

* On the client side, sessions are just unique IDs
passed back and forth between client and
server

* On the server side, they can contain arbitrary
informaiton
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Sessions

* |In order to write to a session, you must explicitly
start it
= session_start()

= This is not necessary if session.auto_start is on in your
PHP.INI fil

* You can then write directly into the S_SESSION
array, and the elements you create will be
transparently saved into the session storage
mechanism

= $_SESSION[‘test’] = $myValue
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Sessions

* By default, session data is stored in files;
however, you can specify a number of built-in
filters

* You can also define your own session handlers
in “userland”
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Date Manipulation in PHP

* For the most part, PHP handles dates in the UNIX
timestamp format

= Timestamps indicate the number of seconds from the
UNIX “epoch’, January 1st, 1970

= Not all platforms support negative timestamps (e.g.:
Windows prior to PHP 5.1)

* Timestamps are very handy because they are
just large intergers

= This makes it easy to manipulate them, but not
necessarily to represent them

= They are also handy for time calculations
= For more precision, you can use microtime()
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Date Manipulation in PHP

* Another way of representing dates is through

date arrays using getdate()

= A date array contains separate elements for each
component of a date

= [seconds] =>15//0-59

'minutes] =>15//0- 59

hours] =>9 //0-23

‘mday] =>4 //1- 31

wday] =>3//0-6

mon] =>8//1-12

'year] => 2004 // 1970 - 2032+

'yday] => 216 // 0 - 366

'weekday] => Wednesday // Monday - Sunday
'month] => August // January - December
[0] => 1091625315 // UNIX fime stamp
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Time and Local Time

* The time() function returns the timestamp for the
current time
= time() (no parameters needed)

* Localtime performs similarly, but returns an array

XN M WN—=O

=> 59 // seconds O - 59

=> 19 // minutes O - 59

=>9 // hourO - 23

=>4 // day of month 1 - 31

=> 7 [/ month of the year, starting with 0 for January
=> 104 // Years since 1900

=> 3 // Day of the week, starting with O for Sunday
=> 216 // Day of the year

=>1// Is daylight savings tfime in effect
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More Local Time

* Localtime() can also return an associative array:
= var_dump (localtime(time, 1));
= Qutputs:

* [tm_sec] =>1//seconds O - 59
[tm_min] => 23 // minutes 0 - 59
[tm_hour] =>9 // hour 0 - 23
[tm_mday] =>4 // day of month 1 - 31
[tm_mon] => 6 // month of the year, 0 for January
[tm_year] => 104 // Years since 1900
[tm_wday] => 0 // Day of the week, 0 for Sunday
[tm_yday] => 185 // Day of the year
[tm_isdst] => 1 // Is daylight savings time in effect
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Formatting Dates

* Timestamps are great for calculations, but not
for human redability

* The date() function can be used to format a
date according to an arbitrary set of rules:

= date (“Y-m-d H:i:s\n");
= date (‘\d\a\f\e: Y-m-d’);

o strftime() provides a printf-like, locale-
dependent formatting mechanism for date/time
values:

= stritime (“%A", time()); // Prints weekday

= You need to use setlocale (LC_TIME, $timezone) in
order to set the timezone to a particular value
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Creating Dates

* Dates can be created using mkiime():
= mktime (hour, min, sec, mon, day, year, daylight)

* Several date-related functions have GMT-
equivalents:
= gmmktime()
= gmdate()
= gmstrftime()

* ltis also possible to change the timezone—ijust
change the TZ environment variable:

= putenv (“TZ=Canada/Toronto");
= This will be equivalent to EST or EDT
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Interpreting Date Input

* |tis also possible to create a timestamp from a
formatted string date using strtotime():
= strotime(“now");
= strtotime(“+1 week”);
= strtotime("“November 28, 2005");
= strtotime(""Next Monday”);

* You can also check whether a date is valid by
using the checkdate() function:
= checkdate (month, date, year)
= Automatically accounts for leap years

= Not foolproof—incapable for example, to account for
the Gregorian gap
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Q&A Time

* How would you make a cookie expire in exactly
one hour (assuming that the client machine on
which the browser is set to the correct time and
time zone—and that it resides in a time zone
different from your server’s)?

* What is the simplest way of transforming the
output of microtime() into a single numeric
value?

* If no expiration time is explicitly set for a cookie,
what happens to it?
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ANswers

* How would you make a cookie expire in exactly
one hour (assuming that the client machine on
which the browser is set to the correct time and
time zone—and that it resides in a time zone
different from your server’s)?

* Pass time() + 3600 as the expiry

Oct. 18, 2005 99



ANswers

* What is the simplest way of transforming the
output of microtime() into a single numeric
value?

* array_sum (explode (* ‘, microtime()));
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ANswers

* |If no expiration time is explicitly set for a cookie,
what happens to it?

* It expires at the end of the browser’s session
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PART IV: Files and E-maill

* What we’ll cover in this section:
= Opening and closing files
= Reading from and writing to files
= Getfing information about a file
= Copying, renaming, deleting files
= File permissions
= File locks
= Sending e-mail
= MIME
= HTML E-mails
= Multipart E-mails

Oct. 18, 2005 102



Files — Opening and Closing

* Files are open using the fopen() function:
= fopen ($filename, $mode)
= returns a file resource (not a pointer!)

* The Smode parameter indicates how the file
should be open:
= r—read only
= r+ —read/write
= w — write only and create the file
= w+ —read/write and create the file
= a— write only and position at end of file
= g+ —read/write and position at end of file
= x — write only, fail if file already exists
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Files — Opening and Closing

* If your PHP has been compiled with URL
wrappers support, fopen() works both on local
and “remote” files via any of the supported
protocols:

= fopen ("http://www.phparch.com”, "r");

* Files can be closed using fclose()

= This is not necessary, because PHP closes all open
handles at the end of script

= However, it's a good idea in some cases
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Files — Reading & Writing

* Data is read from a file through a number of
functions. The most common one is fread():
= $data = fread ($file, $qgty);
= Returns the maximum data available, up to $gty bytes

* The fgets() function reads data one line at a
time:
= $data = fgets ($file, $maxLen);

= Returns data up to (and including) the next newline
character or $maxLen - 1;
= May or may not work depending on how the file has
been encoded
* auto_detect_line_endings PHP.INI setting
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Files — Reading and Writing

* Writing works in a similar way:
= fwrite ($file, $data)

= Writes as much of $data as possible, returns amount
written

* You can also use fputs(), which is effectively an
alias for fwrite()
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Files — File Position

* The file position is updated as your read from or
write to a file

= ftell ($file) — Returns the current offset (in bytes) from
the beginning of the file
* You can manually alter the current position
using fseek():

= fseek ($file, $position, $from)

= $from can be one of three constants:
e SEEK_SET (beginning of file)
e SEEK_CUR (current offset)
e SEEK_END (end of file — $from should be < 0)
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Files — File Information

* The fstat() function returns several pieces of
information about a file:
= var_dump (fstat ($file))

 [dev] => 5633 // device
[ino] => 1059816 // inode
[mode] => 33188 // permissions
[nlink] => 1 // number of hard links
[uid] => 1000 // user id of owner
[gid] => 102 // group id of owner
[rdev] => -1 // device type
[size] => 106 // size of file

[atime] => 1092665414 // time of last access
[mtime] => 1092665412 // time of last modification
[ctime] => 1092665412 // time of last change
[blksize] => -1 // blocksize for filesystem 1/O
[blocks] => -1 // number of blocks allocated
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Files — File Information

* The stai() function is a version of fstat() that does
not require you to open the file
= var_dump (stat ($fileName))

» Several functions provide only portions of the
info returned by stai() and fstat()
= file_exists ($fileName)
= fileatime ($fileName) — Last access fime
= fileowner ($fileName)
= filegroup ($fileName)

* The results of these functions are cached

= This can lead to confusing results if you make changes
to a file in the same after you've run one of these
convenience functions
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Files — File Information

* File permissions can be determined using either
the bitmask from fstat() or some more
convenience functions

is_readable ($fileName);

is_writable ($fleName);

is_executable ($fileName);

is_uploaded_file ($fileName);

* They can also be changed:
= chmod ($fileName, 0777);
= Note use of octal number

* The filesize() function returns the size of a file
= echo filesize ($fileName)
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Copying, Renaming & Deleting

* Files can be copied using the copy() function:
= copy ($sourcePath, $destPath)

* Renaming is done through rename():

= rename ($sourcePath, $destPath);

= Guaranteed to be atomic across the same partition
* Files are deleted using unlink():

= unlink ($fileName);

= NOT delete()!

* Files can also be “touched”:
= fouch ($fleName);

* All these functions report success/failure via a
Boolean value
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Directories

* Directories cannot be removed using unlink:
= $success = rmdir ($dirName);
= The directory must be empty

= This means that you must write your own code to
empty the directory and any subdirectories
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File Locking

* File locking ensures ordered access to a file

* PHP’s locking module is collaborative
= Every application that accesses the file must use it

* Locks can be shared or exclusive
= $lock = ($file, $lockType, &$wouldBlock);
= $lockType: LOCK_SH, LOCK_EX
= Torelease alock: LOCK_UN
= To prevent blocking, OR with LOCK_NB

e Several limitations:

= Doesn’'t work on most networked filesystems, or on FAT
(WIin98)
= Sometimes implemented per-process
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More File Fun

* Some useful file functions
o file():
= Reads an entire file in memory, splits it along newlines

* readfile():
= Reads an entire file, outputs it

* fpassthru():
= Same as readfile(), but works on file pointer and
supports partfial output
* file_get _contents():
= Reads entire file in memory

= Remember that file_put_contents() is a PHP 5-only
function!
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PHP and E-mall

* PHP supports sending of e-mail through the
mail() function
= Contrary to popular belief, it's not always available

= Relies on sendmail in UNIX, implements its own
wrappers in Windows and Netware

= Built-in wrappers do not support authentication

= The from address is set automatically under Linux
(ohp_user@serverdomain), must be set in PHP.ini under
Windows

Oct. 18, 2005 115



E-mail — The mail() Function

* The mail() function accepts five parameters:
= mail ($to, $subject, $body, $headers, $extra)
* mail() provides a raw interface to sending mail
= No support for attachments
= No support for MIME
= No support for HTML mail

* Extra headers can be set, including overriding
the default From:

= On UNIX machines, this may require setting -f in $extra

= This may not work if PHP user is not “trusted” by
sendmail
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E-mail — MIME

* E-mail only supports 7-bit ASCII

= Good for anglophones, not so good for the rest of the
world

= MIME provides support for sending arbitrary data over
e-mail
= MIME is supported by most MUAS, although often the
target of spam filters
* MIME headers also define the type of data that is
being sent as part of an e-mail:

= For example, HTML:

* "MIME-Version: 1.0\r\n".
"Content-Type: text/html; charset=\"iso-885%-1\"\r\n" .
"Content-Transfer-Encoding: 7bit\r\n"
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E-mail — MIME and Multipart

* Multipart e-mails make it possible to send an e-
mail that contains more than one “part”

= "MIME-Version: 1.0\r\n" .
"Content-Type: multipart/alternative;\r\n" .
" boundary=\"{$boundary}\"\r\n";

= Examples:
 HTML and Text bodies (plain-text should go first)
* Attachments
* Most clients support multipart—but for those who
don’t, you always provide a plain-text message
at the beginning

= YIf you are reading this, your client is too old!”
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E-mail — MIME and Multipart

* The different parits are separated by a unique
boundary

= $message .="--". $boundary . "\r\n" .
"Content-Type: text/plain; charset=us-ascii\r\n" .
“Content-Transfer-Encoding: 7bit\r\n\r\n" .
"Plain text" .
"\'\n\r\n--". $boundary . "--\r\n";

= Note the two dashes before each boundary, and after
the last boundary

* Binary attachments must be encoded:

= "Content-Transfer-Encoding: baseé4\r\n" .
‘Content-disposition: attachment; file="l.gif " \r\n\r\n"

= baseb4_encode ($file);
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E-mail — Getting a handle

* It's impossible to know whether an e-mail was
successfully sent

= mail() only returns a success/failure Boolean for its end
of the deadl

= E-mail can get lost at pretty much any point in the
tfranmission process

= The mail protocol does not have a thoroughly-
respected feedback mechanism
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Q&A Time

* Which function(s) retrieve the entire contents of
a file in such a way that it can be used as part of
an expression?

e What does the built-in delete function do?

* Which MIME content type would be used to send
an e-mail that contains HTML, rich text, and plain
text versions of the same message so that the e-
mail client will choose the most appropriate
version?
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ANswers

e Which function(s) retrieve the entire contents of
a file in such a way that it can be used as part of
an expression?

* file_get_contents()
o file()
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ANswers

e What does the built-in delete function do?

* |t doesn’t exist!
* Use unlink() instead
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ANswers

* Which MIME content type would be used to send
an e-mail that contains HTML, rich text, and plain
text versions of the same message so that the e-
mail client will choose the most appropriate
version?

* multipart/alternative

= segment which contains sub-segments representing
multiple versions of the same content
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* What we’ll cover in this section:
= Databasics
= |ndices and keys
= Table manipulation
= Joins
= Aggregates
= Transactions
= File wrappers
= Streams
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Databasics

* The exam covers databases at an abstract level
= No specific implementation
= SQL-92 standards only

* Only the basics of database design and
programming are actually required

= Table creation/population/manipulation
= Data extraction

= Reference integrity
= Joins / Grouping / Aggregates
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Databasics

e Relational databases

= Called because the relationship among different
entities is its foundation

e Schemas/databases
e Tables

* Rows
= Data types
° Int

* Float
e Char/varchar
* BIOBs
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Indices

* Indices organize data
= Useful to enforce integrity
= Essential fo performance

* Indices can be created on one or more columns
= More rows == bigger index
= Columns that are part of indices are called keys

* Indices can be of two types: unique or not
unique
= Unique indices make it possible to ensure that no two
combination of the same keys exist in the table

= Non-unigue indices simply speed up the retrieval of
information
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Creating Schemas and Tables

e Schemas are created with CREATE DATABASE:
= CREATE DATABASE dafabase _name

e Tables are created with CREATE TABLE:

= CREATE TABLE table_name |
columnli columnl_type,

...
* Table names are unique
= This is frue on a per-schema basis

e Each table must contain at least one column

= Most DBMSs implement some sort of limits to the size of
a row, but that is not part of the standard
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Creating Indices

* Indices are created using CREATE INDEX:

= CREATE [UNIQUE] INDEX index_name |
columnl,

o)
* Index names must be unique
= On a per-schema basis

* Primary keys are special unique indices that
indicate the “primary” method of accessing a
table

= There can only be one primary key per table

= Generally, the primary key indicates the way the data
is physically sorted in storage
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Creating Good Indices

* A good index provides maximum performance
at minimum cost
= Create only indices that reflect database usage

= |Implement the minimum number of columns per index
= Create as few indices as possible

* Many DBMSs can only use one index per query
= Make sure you understand how your DBMS uses indices

= Analyze, analyze, analyze
= Continue analyzing once you're done!

Oct. 18, 2005 131



Foreign Keys

* A foreign key establishes a relationship between
two tables:
= CREATE TABLE A (ID INT NOT NULL PRIMARY KEY)
= CREATE TABLE B (A_ID INT NOT NULL REFERENCES A(ID))

* Foreign keys enforce referential integrity

= They ensure that you cannot add rows to table B with
values for A_ID that do not exist in table A

= |t also ensures that you cannot delete from table A if
there are TABLE B rows that still reference it
e Some DBMSs do not support foreign keys
= Notably, MySQL until version 5.0
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Inserting, Updating and Deleting

* Rows are inserted in a table using the INSERT
INTO statement:
= INSERT INTO TABLE A (ID) VALUES (123)
= INSERT INTO TABLE A VALUES (123)

* Updates are performed using UPDATE:
= UPDATE A SETID = 124

* Deletions are performed using DELETE:
= DELETE FROM A
* Both additions and deletion can be limited by a

WHERE clause:
= UPDATE A SETID = 124 WHERE ID = 123
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Retrieving Data

* Datais retrieved using the SELECT FROM
statement:
= SELECT * FROM A
= SELECTID FROM A

o SELECT statements can also be limited by a
WHERE clause
= SELECT * FROM A WHERE ID = 123
= SELECT ID FROM A WHERE ID = 123
= Where clauses are what makes indices so important
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* A join makes it possible to... join fogether the
results from two tables:

= SELECT * FROM A INNER JOIN B ON A.ID =B.A_ID

* |Inner Joins require that both tables return rows
for a particular set of keys

e OQOuter Joins require that either table return rows
for a particular set of keys

= SELECT * FROM A LEFT JOIN B
ON A.ID =B.A_ID

= SELECT A.ID, B.* FROM A RIGHT JOIN B
ON A.ID =B.A_ID
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* Joins don’t always work the way you expect
them to

= SELECT * FROM A INNER JOIN B
WHERE A.ID <> B.A_ID

= This won't refurn a list of the rows that A and B do not
have in common

= |t will return a list of all the rows that each row of A
does not have in common with B!

e Joins also rely on indices

* Joins can be stacked, and they are executed
from left to right
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Grouping and Aggregates

* The GROUP BY clause can be used to group
return sets according to one or more columns:
= SELECT A_ID FROM B GROUP BY A_ID

* Grouped result sets can then be used with
aggregates to perform statistical analysis on
data:

= SELECT A_ID, COUNT(A_ID) FROM B GROUP BY A_ID

* When using GROUP BY, only aggregates and
columns that appear in the GROUP BY clause
can be exiracted

= This is the standard, but it's not always respect (notably
by MySQL)
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Aggregaftes

e Sum of all rows
= SUM(column_name)

e Count of rows returned
= COUNT(column_name)
= COUNT(*)

* Arithmetic average:
= AVG(column_name)

°* Maximum / minimum
= MAX (column_name)
= MIN (column_name)

* Not all aggregates can be sped up by proper
indexing
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Nelgilgle

* Result sets can be sorted using the ORDER BY
clause

= SELECT * FROM A ORDER BY ID
* This is superfluous — ID is the primary key!

= SELECT * FROM A ORDER BY ID DESC
= SELECT * FROM B ORDER BY A_ID DESC, ID

» Sorting performance is affected by indexing

Oct. 18, 2005 139



Transactions

* Transaction create atomic sets of operations that
can be committed or rolled back without any
chaange to the underlying data

= BEGIN TRANSACTION
DELETE FROM A
DELETE FROM B
ROLLBACK TRANSACTION

= BEGIN TRANSACTION
UPDATE A SET ID = 124 WHERE ID = 123
UPDATE B SET A_ID = 124 WHERE ID = 123
COMMIT TRANSACTION

* Not all DBMSs support transactions
= For example, MySQL only supports them with InnoDB
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SQL and Dates

* Most DBMSs can handle dates much better than
PHP
= Extended range
= Higher resolution

* Therefore, you should keep all date operations
within your DBMS for as long as possible
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File Wrappers

* File wrappers extend PHP’s file handling

= use fopen(), fread() and all other file functions with
something other than files

= For example, access HTTP, FTP, ZLIB and so on

e Built-in wrappers, or your own

= Simply define your own wrapper class:

e class wrap {
function stream_open($path, $mode, $options, &$opened_path) {}
function stream_read($count) {}
function stream_write($data) {}
function stream_tell() {}
function stream_eof() {}
function stream_seek($offset, $whence) {}
}
stream_wrapper_register("wrap", "wrap"); // register wrapper
$fp = fopen("'wrap://some_file", "r+"); // open file via new wrapper
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File Wrappers

* Not all file wrappers support all operations
= For example, HTTP is read-only

* Remote file access may be turned off
= Use the allow_furl_open PHP.INI directive

e Some wrappers are write-only
= For example: php://stdout and php://stderr

* Some wrappers do not support appending
= For example ftp://

* Only the “file://” wrapper allows simultaneous
read and write operations
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File Wrappers

* File wrappers support information retrieval via
stat() and fstat()

= This is only implemented for file://

= Remember, however, that SMB and NFS files are “local”
as far as the operating system is concerned

* Deleting and renaming is also supported
= Renaming only supported for local file (but see above)
= Both require write access

* You can also access and manipulate directories
= Supported only for local files

* Remember to close unused wrapper instance
= Not necessary, but often a good idea
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Streams

* Sireams represent access to network services
= File wrapper
= One or two pipelines
= Context
= Metadata

* Pipelines
= Established to allow for the actual streaming of data
= Can be one only (read or write) or two (read and

write)
e Context

= Provides access to advanced options
* For example, under HTTP you can set additional headers

Oct. 18, 2005 145



Streams

* Metadata
= Contains “out-of-band” information provided by the
sfream
* print_r(stream_get_meta_data(fopen("http://www.php.net", 'r")));
/* Array (

[wrapper_data] => Array (
[0] => HTTP/1.1 200 OK
[1] => Date: Wed, 25 Aug 2004 22:19:57 GMT
[2] => Server: Apache/1.3.26 (Unix) mod_gzip/1.3.26.1a PHP/4.3.3-dev
[3] => X-Powered-By: PHP/4.3.3-dev
[4] => Last-Modified: Wed, 25 Aug 2004 21:12:17 GMT
[5] => Content-language: en
[8] => Content-Type: text/html;charset=ISO-8859-1
)
[wrapper_type] => HTTP
[stream_type] => socket
[unread_bytes] => 1067
[timed_out] =>
[blocked] => 1
[eof] =>
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* Sockets provide the lowest-level form of network
communication

= Because of this, you should use them only when strictly
necessary
» Several fransports are supported:
= TCP/UPD
= SSL
= TLS
UNIX
= UDG

* You can’t switch transports mid-stream
= Sometimes problematic for TLS
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* Opening:
= $fp = fsockopen ($location, $port, &$errno, &$errstr)

You can then use fwrite, fread(), fgets(), etc.

* Opening persistend sockets:

$fp = pfsockopen ($location, $port, &$errno, &$errstr)

Persistent sockets will only work for persistent APIs, like
mod_php on Apache and FastCGl

Connections can also be terminated from the remote
host because of lack of network activity

Use with care—lofts of potential pitfalls!
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Socket Timeout

* An optional fifth parameter to fsockopen()
indicates timeout
= $fp = fsockopen("'www.php.net", 80, $errno, $errstr, 30);
= Timeout is in seconds

= Default is stored in default_socket timeout PHP.INI
setfing

* Timeout must be set separately for network
activity:
= socket_set_timeout ($socket, $timeout)
* Sockets can be blocking or non-blocking

= stream_set_blocking ($socket, FALSE);
= This needs a pre-existing socket!
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Q&A Time

* What does an “inner join” construct do?

* What function would you use to open a socket
connection manually with the purpose of
communicating with a server not supported by a
file wrapper?

* When dealing with fimeout values in sockets, the
connection timeout can be changed
independently of the read/write time out. Which
function must be used for this purpose?
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ANswers

* What does an “inner join” construct do?

* It creates aresult set based on the rows in
common between two tables
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ANswers

* What function would you use to open a socket
connection manually with the purpose of
communicating with a server not supported by a
file wrapper?

* fsockopen()
* pfsockopen() for persistent connections
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ANswers

* When dealing with fimeout values in sockets, the
connection timeout can be changed
independently of the read/write time out. Which
function must be used for this purpose?

* stream_set_timeoui()
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e What we'll cover in this section:

Data filtering

SQL injection

Command injection

XSS

Safe mode

Coding Standards

Error logging

Debugging and optimization
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Data Filtering

e Users are evil
= And sometimes they don’t even know it

* You should always “taint” and filter data
= PHP provides lots of functions that can help here

= Never rely on register_globals

* In fact, if you're writing for redistribution, undo its effects if
it is on

* Data filtering depends on what you need to do
with it
= You will rarely need “raw” data

= Most of the time, it needs to be escaped to do
something or other—e.g.: display, insert into db, and so
on
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SQL Injection

* SQL injection occurs when improperly filtered
data ends up in a database query
= “SELECT * FROM USER WHERE ID = $id”
= $id = “1; DELETE FROM USER;”

* Most DBMS modules have their own escaping

mechanisms
= mysql_real_escape_string()
= addslashes() — The swiss army knife approach
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Command Injection

e Command injection takes place when
improperly filtered input ends up in a shell
command

e Both commands and parameters should be
escaped:
= escapeshellemd ($cmd)
= escapeshellarg ($arg)
= shell_exec ($cmd . * ‘. $arg)
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Cross-site Scripting

e XSS happens when improperly escaped input is
outpuited to the client
= XSS can be used for all sorts of nasty purposes

= Often underrated, it is an extremely serious security
problem

= |t's often easy to implement on the attacker’s side

* User input should be properly escaped before
being outpuited back to the browser
= htmlspecialchars()
= htmlentifies()
= strip_tags()
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Safe Mode

* Safe mode implements certain restrictions to
help prevent security problems
= UID matching
= open_basedir restrictions

* Safe mode and open_basedir have several
drawbacks

= PHP is not the right place for implementing security at
this level

= Files created in safe_mode may not be readable by
your scripts!

= Add noficeable overhead to the system
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Coding Standards

e Coding standards help writing good code

There is no “official” standard connected with the
exam

e A fewideas:

Flattening if statements
Splitting long statements across multiple lines

Using substitution instead of concatenation
* Watch out for performance hits

Comparison vs. Assignment

* Reverse comparisons
Use type-sensitive comparisons when possible
Validate resources
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Error Management

* PHP has an impressive array of error
management facilities—use them!

e Report all errors during development

e Keep error reporting on in production, but shift to
logging
* Implement your own error handlers
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Debugging

* Debugging can be very difficult

* “Echo” debugging is the simplest form
= Qutput status throughout the script’s execution

* Complex logic is better handled through
external debuggers

= Lots available—from open source (Xdebug) to
commercial (e.g.: Zend Studio IDE)

= |DEs support both local and remote debugging
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Optimization

* Optimization can be as simple as installing a
bytecode cache
= No changes to codebase
* |[mmediate (but limited) benefits

* Proper optimization requires good analysis
= Finding bottlenecks

* Optimization can take place on multiple levels:
= Write faster code
= Remove external bottlenecks
= Use caching for internal bottlenecks
= |mprove web server configuration
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Q&A Time

* Although the best practice is to disable
register_globals entirely, if it must be enabled,
what should your scripts do to prevent malicious
users from compromising their security?

* When uploading a file, is there a way to ensure
that the client browser will disallow sending a
document larger than a certain size?

e Can you turn off all error reporting from within a
script with a single PHP function call?
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ANswers

* Although the best practice is to disable
register_globals entirely, if it must be enabled,
what should your scripts do to prevent malicious
users from compromising their security?

e Filter all data
e |nitialize all variables
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ANswers

* When uploading a file, is there a way to ensure
that the client browser will disallow sending a
document larger than a certain size?

* No.

= You can check a file size afterit’s been uploaded
= The server can ignore files above a certain size

= But you can't prevent the user from frying to send the
data across the network

Oct. 18, 2005 166



ANswers

e Can you turn off all error reporting from within a
script with a single PHP function call?

* No.
= error_reporting() will not silence parse errors
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Conclusion

* A few quick words about the exam

* Pay close attention to the code

= Pay close attention to the code
= Are you paying close attention yete?¢?

e You have 90 minutes—use them all

* Use the booklet to mark your questions before
you transfer them over to the answer sheet

* Remember that you're working with PHP 4, not
PHP 5—and 4.3, not 4.4!

* Don’t forget to sign up for your exam at the
registration desk
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