
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

52

Chapter 3CHAPTER 3

PHP

PHP is the most popular web scripting language and an essential part of the Apache
platform. Consequently, it is likely most web application installations will require
PHP’s presence. However, if your PHP needs are moderate, consider replacing the
functionality you need using plain-old CGI scripts. The PHP module is a complex
one and one that had many problems in the past.

This chapter will help you use PHP securely. In addition to the information pro-
vided here, you may find the following resources useful:

• Security section of the PHP manual (http://www.php.net/manual/en/security.php)

• PHP Security Consortium (http://www.phpsec.org)

Installation
In this section, I will present the installation and configuration procedures for two
different options: using PHP as a module and using it as a CGI. Using PHP as a mod-
ule is suitable for systems that are dedicated to a single purpose or for sites run by
trusted groups of administrators and developers. Using PHP as a CGI (possibly with
an execution wrapper) is a better option when users cannot be fully trusted, in spite
of its worse performance. (Chapter 6 discusses running PHP over FastCGI which is
an alternative approach that can, in some circumstances, provide the speed of the
module combined with the privilege separation of a CGI.) To begin with the installa-
tion process, download the PHP source code from http://www.php.net.

Using PHP as a Module
When PHP is installed as a module, it becomes a part of Apache and performs all oper-
ations as the Apache user (usually httpd). The configuration process is similar to that of
Apache itself. You need to prepare PHP source code for compilation by calling the
configure script (in the directory where you unpacked the distribution), at a minimum

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Installation | 53

letting it know where Apache’s apxs tool resides. The apxs tool is used as the interface
between Apache and third-party modules:

$./configure --with-apxs=/usr/local/apache/bin/apxs
$ make
make install

Replace --with-apxs with --with-apxs2 if you are running Apache 2. If you plan to
use PHP only from within the web server, it may be useful to put the installation
together with Apache. Use the --prefix configuration parameter for that:

$./configure \
> --with-apxs=/usr/local/apache/bin/apxs \
> --prefix=/usr/local/apache/php

In addition to making PHP work with Apache, a command-line version of PHP will
be compiled and copied to /usr/local/apache/php/bin/php. The command-line version
is useful if you want to use PHP for general scripting, unrelated to web servers.

The following configuration data makes Apache load PHP when it starts and allows
Apache to identify which pages contain PHP code:

Load the PHP module (the module is in
subdirectory modules/ in Apache 2)
LoadModule php5_module libexec/libphp5.so
Activate the module (not needed with Apache 2)
AddModule mod_php5.c

Associate file extensions with PHP
AddHandler application/x-httpd-php .php
AddHandler application/x-httpd-php .php3
AddHandler application/x-httpd-php .inc
AddHandler application/x-httpd-php .class
AddHandler application/x-httpd-php .module

I choose to associate several extensions with the PHP module. One of the extensions
(.php3) is there for backward compatibility. Java class files end in .class but there is
little chance of clash because these files should never be accessed directly by Apache.
The others are there to increase security. Many developers use extensions other than
.php for their PHP code. These files are not meant to be accessed directly but through
an include() statement. Unfortunately, these files are often stored under the web
server tree for convenience and anyone who knows their names can request them
from the web server. This often leads to a security problem. (This issue is discussed
in more detail in Chapters 10 and 11.)

Next, update the DirectoryIndex directive:

DirectoryIndex index.html index.php

Finally, place a version of php.ini in /usr/local/apache/php/lib/. A frequent installation
error occurs when the configuration file is placed at a wrong location, where it fails to
have any effect on the PHP engine. To make sure a configuration file is active, create a

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: PHP

page with a single call to the phpinfo() function and compare the output with the set-
tings configured in your php.ini file.

Using PHP as a CGI
Compiling PHP as a CGI is similar to compiling it for the situation where you are
going to use it as a module. This mode of operation is the default for PHP, so there is
no need to specify an option on the configure line. There are two ways to configure
and compile PHP depending on the approach you want to use to invoke PHP scripts
from Apache.

One approach is to treat PHP scripts like other CGI scripts, in which case the execu-
tion will be carried out through the operating system. The same rules as for other
CGI scripts apply: the file must be marked as executable, and CGI execution must be
enabled with an appropriate ExecCGI option in the configuration. To compile PHP
for this approach, configure it with the --enable-discard-path option:

$./configure \
> --enable-discard-path \
> --prefix=/usr/local/apache/php
$ make
make install

The operating system must have a way of determining how to execute the script.
Some systems use file extensions for this purpose. On most Unix systems, the first
line, called the shebang line, in the script must tell the system how to execute it.
Here’s a sample script that includes such a line:

#!/usr/local/apache/php/bin/php
<? echo "Hello world"; ?>

This method of execution is not popular. When PHP is operating as an Apache mod-
ule, PHP scripts do not require the shebang line at the top. Migrating from a module
to CGI operation, therefore, requires modifying every script. Not only is that time
consuming but also confusing for programmers.

The second approach to running PHP as a CGI is Apache-specific and relies on
Apache’s ability to have a CGI script post-process static files. First, configure, com-
pile, and install PHP, this time specifying the --enable-force-cgi-redirect option:

$./configure \
> --enable-force-cgi-redirect \
> --prefix=/usr/local/apache/php
$ make
make install

Place a copy of the PHP interpreter (/usr/local/apache/php/bin/php) into the web
server’s cgi-bin/ directory. Configure Apache to use the interpreter to post-process all
PHP files. In the example below, I am using one extension (.php), but you can add

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Installation | 55

more by adding multiple AddHandler directives (as shown in the section “Using PHP
as a Module”):

Action application/x-httpd-php /cgi-bin/php
AddHandler application/x-httpd-php .php

I have used the same MIME type (application/x-httpd-php) as before, when configur-
ing PHP to work as a module. This is not necessary but it makes it easier to switch
from PHP working as a module to PHP working as a CGI. Any name (e.g., php-
script) can be used provided it is used in both directives. If you do that, you can have
PHP working as a module and as a script at the same time without a conflict.

Placing an interpreter (of any kind) into a cgi-bin/ directory can be dangerous. If this
directory is public, then anyone can invoke the interpreter directly and essentially ask
it to process any file on disk as a script. This would result in an information leak or
command execution vulnerability. Unfortunately, there is no other way since this is
how Apache’s Action execution mechanism works. However, a defense against this
type of attack is built into PHP, and that’s what the --enable-force-cgi-redirect
switch we used to compile PHP is for. With this defense enabled, attempts to access
the PHP interpreter directly will always fail. I recommend that you test the protec-
tion works by attempting to invoke the interpreter directly yourself. The configure
script silently ignores unrecognized directives, so the system can be open to attack if
you make a typing error when specifying the --enable-force-cgi-redirect option.

To ensure no one can exploit the PHP interpreter by calling it directly,
create a separate folder, for example php-cgi-bin/, put only the inter-
preter there, and deny all access to it using Deny from all. Network
access controls are not applied to internal redirections (which is how
the Action directive works), so PHP will continue to work but all
attack attempts will fail.

Choosing Modules
PHP has its own extension mechanism that breaks functionality into modules, and it
equally applies when it is running as an Apache module or as a CGI. As was the case
with Apache, some PHP modules are more dangerous than others. Looking at the
configure script, it is not easy to tell which modules are loaded by default. The com-
mand line and CGI versions of PHP can be invoked with a -m switch to produce a list
of compiled-in modules (the output in the example below is from PHP 5.0.2):

$./php -m
[PHP Modules]
ctype
iconv
pcre
posix
session
SPL

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: PHP

SQLite
standard
tokenizer
xml

[Zend Modules]

If you have PHP running as an Apache module, you must run the following simple
script as a web page, which will provide a similar output:

<pre>
<?
$extension_list = get_loaded_extensions();
foreach($extension_list as $id => $extension) {
 echo($id . ". " . $extension . "\n");
}
?>
</pre>

For the purpose of our discussion, the list of default modules in the PHP 4.x branch is
practically identical. From a security point of view, only the posix module is of inter-
est. According to the documentation (http://www.php.net/manual/en/ref.posix.php), it
can be used to access sensitive information. I have seen PHP-based exploit scripts use
POSIX calls for reconnaissance. To disable this module, use the --disable-posix
switch when configuring PHP for compilation.

In your job as system administrator, you will likely receive requests from your users
to add various PHP modules to the installation (a wealth of modules is one of PHP’s
strengths). You should evaluate the impact of a new PHP module every time you
make a change to the configuration.

Configuration
Configuring PHP can be a time-consuming task since it offers a large number of con-
figuration options. The distribution comes with a recommended configuration file
php.ini-recommended, but I suggest that you just use this file as a starting point and
create your own recommended configuration.

Disabling Undesirable Options
Working with PHP you will discover it is a powerful tool, often too powerful. It also
has a history of loose default configuration options. Though the PHP core develop-
ers have paid more attention to security in recent years, PHP is still not as secure as it
could be.

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuration | 57

register_globals and allow_url_fopen

One PHP configuration option strikes fear into the hearts of system administrators
everywhere, and it is called register_globals. This option is off by default as of PHP
4.2.0, but I am mentioning it here because:

• It is dangerous.

• You will sometimes be in a position to audit an existing Apache installation, so
you will want to look for this option.

• Sooner or later, you will get a request from a user to turn it on. Do not do this.

I am sure it seemed like a great idea when people were not as aware of web security
issues. This option, when enabled, automatically transforms request parameters
directly into PHP global parameters. Suppose you had a URL with a name parameter:

http://www.apachesecurity.net/sayhello.php?name=Ivan

The PHP code to process the request could be this simple:

<? echo "Hello $name!"; ?>

With web programming being as easy as this, it is no wonder the popularity of PHP
exploded. Unfortunately, this kind of functionality led to all sorts of unwanted side
effects, which people discovered after writing tons of insecure code. Look at the fol-
lowing code fragment, placed on the top of an administration page:

<?
if (isset($admin) = = false) {
 die "This page is for the administrator only!";
}
?>

In theory, the software would set the $admin variable to true when it authenticates
the user and figures out the user has administration privileges. In practice, append-
ing ?admin=1 to the URL would cause PHP to create the $admin variable where one is
absent. And it gets worse.

Another PHP option, allow_url_fopen, allows programmers to treat URLs as files.
(This option is still on by default.) People often use data from a request to determine
the name of a file to read, as in the following example of an application that expects
a parameter to specify the name of the file to execute:

http://www.example.com/view.php?what=index.php

The application then uses the value of the parameter what directly in a call to the
include() language construct:

<? include($what) ?>

As a result, an attacker can, by sending a path to any file on the system as parameter (for
example /etc/passwd), read any file on the server. The include() puts the contents of
the file into the resulting web page. So, what does this have to do with allow_url_fopen?

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: PHP

Well, if this option is enabled and you supply a URL in the what parameter, PHP will
read and execute arbitrary code from wherever on the Internet you tell it to!

Because of all this, we turn off these options in the php.ini file:

allow_url_fopen = Off
register_globals = Off

Dynamic module loading

I have mentioned that, like Apache, PHP uses modules to extend its functionality
dynamically. Unlike Apache, PHP can load modules programmatically using the dl()
function from a script. When a dynamic module is loaded, it integrates into PHP and
runs with its full permissions. Someone could write a custom extension to get
around the limitations we impose in the configuration. This type of attack has
recently been described in a Phrack article: “Attacking Apache with builtin Modules
in Multihomed Environments” by andi@void (http://www.phrack.org/phrack/62/p62-
0x0a_Attacking_Apache_Modules.txt).

The attack described in the article uses a custom PHP extension to load malicious
code into the Apache process and take over the web server. As you would expect, we
want this functionality turned off. Modules can still be used but only when refer-
enced from php.ini:

enable_dl = Off

Display of information about PHP

I mentioned in Chapter 2 that Apache allows modules to add their signatures to the
signature of the web server, and told why that is undesirable. PHP will take advan-
tage of this feature by default, making the PHP version appear in the Server response
header. (This allows the PHP Group to publish the PHP usage statistics shown at
http://www.php.net/usage.php.) Here is an example:

Server: Apache/1.3.31 (Unix) PHP/4.3.7

We turned this feature off on the Apache level, so you may think further action
would be unnecessary. However, there is another way PHP makes its presence
known: through special Easter egg URLs. The following URL will, on a site with PHP
configured to make its presence known, show the PHP credits page:

http://www.example.com/index.php?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000

There are three more special addresses, one for the PHP logo, the Zend logo, and the
real Easter egg logo, respectively:

PHPE9568F34-D428-11d2-A769-00AA001ACF42
PHPE9568F35-D428-11d2-A769-00AA001ACF42
PHPE9568F36-D428-11d2-A769-00AA001ACF42

The Easter egg logo will be shown instead of the official PHP logo every year on April
1. Use the expose_php configuration directive to tell PHP to keep quiet. Setting this

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuration | 59

directive to Off will prevent the version number from reaching the Server response
header and special URLs from being processed:

expose_php = Off

Disabling Functions and Classes
The PHP configuration directives disable_functions and disable_classes allow arbi-
trary functions and classes to be disabled.

One good candidate function is openlog(). This function, with syslog(), allows PHP
scripts to send messages to the syslog. Unfortunately, the function allows the script
to change the name under which the process is visible to the syslog. Someone mali-
cious could change this name on purpose and have the Apache messages appear in
the syslog under a different name. The name of the logging process is often used for
sorting syslog messages, so the name change could force the messages to be missed.
Fortunately, the use of openlog() is optional, and it can be disabled.

disable_functions = openlog

Some PHP/Apache integration functions (listed below and available only when PHP
is used as an Apache module) can be dangerous. If none of your scripts require this
functionality, consider disabling them using the disable_functions directive:

apache_child_terminate
apache_get_modules
apache_get_version
apache_getenv
apache_note
apache_setenv
virtual

Restricting Filesystem Access
The most useful security-related PHP directive is open_basedir. It tells PHP which
files it can access. The value for the directive consists of a list of file prefixes, sepa-
rated by a colon on Unix or a semicolon on Windows. The restrictions imposed by
this directive apply to PHP scripts and (data) files. This option should be used even
on servers with only one web site, and it should be configured to point one folder up
from the web server root, which for the purposes of this book we set to /var/www/
htdocs. Given that web server root, here is how open_basedir should be set:

open_basedir = /var/www/

The setting above will allow the PHP engine to run the scripts that are under the web
server root (/var/www/htdocs) and to access the data files that are stored in a private
area (/var/www/data). If you do not need nonpublic files, allow PHP to access the
web server tree only by restricting PHP to /var/www/htdocs instead.

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: PHP

Know the difference between restrictions to a folder and restrictions
to a prefix. For example, if were we to set the value of the directive
to /var/www, scripts would be able to access the files in /var/www
and /var/www2. By having the slash at the end (as in the example
above), the scripts are prevented from going outside /var/www.

In Chapter 2, I described a method of restricting Apache into its own filesystem.
That type of protection uses the operating system features and results in robust pro-
tection, so a process cannot access outside files even when it wants to. In contrast,
the open_basedir restrictions in PHP are a form of self-discipline. The developers of
PHP have attempted to add special checks wherever files are accessed in the source
code. This is a difficult task, and ways to trick PHP are published online from time to
time. Controlling third-party modules is nearly impossible. A good example is this
Bugtraq message:

“PHP4 cURL functions bypass open_basedir” (http://www.securityfocus.com/
archive/1/379657/2004-10-26/2004-11-01/0)

In the message, the author describes how the cURL PHP extension can be used to
bypass open_basedir restrictions.

Another directive, doc_root, sounds suspiciously like a synonym for open_basedir, but
it isn’t. This one only works when PHP is used as a CGI script and only to limit which
scripts will be executed. (Details are available at http://www.php.net/security.cgi-bin.)

Setting Logging Options
Not all PHP errors are logged by default. Many useful messages are tagged with the
level E_NOTICE and overlooked. Always set error logging to the maximum:

error_reporting = E_ALL
log_errors = On

To see any errors, you need to turn error logging on. This is done using the error_log
configuration option. If this option is left unspecified, the errors go to the standard
error output, typically the Apache error log. Otherwise, error_log accepts the follow-
ing values:

syslog
Errors are sent to the system’s syslog.

<filename>
By putting an actual filename as the parameter, you tell PHP to write all errors to
the specified separate log file.

When using a separate file for PHP logging, you need to configure permissions
securely. Unlike the Apache logs, which are opened at the beginning when Apache is
still running as root, PHP logs are created and written to later, while the process is

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuration | 61

running as the web server user. This means you cannot place the PHP error log into
the same folder where other logs are. Instead, create a subfolder and give write access
to the subfolder to the web server user (httpd):

cd /var/www/logs
mkdir php
chown httpd php

In the php.ini file, configure the error_log option:

error_log = /var/www/logs/php/php_error_log

The option to display errors in the HTML page as they occur can be very useful dur-
ing development but dangerous on a production server. It is recommended that you
install your own error handler to handle messages and turn off this option. The same
applies to PHP startup errors:

display_errors = Off
display_startup_errors = Off

Setting Limits
When PHP is compiled with a --enable-memory-limit (I recommend it), it becomes
possible to put a limit on the amount of memory a script consumes. Consider using
this option to prevent badly written scripts from using too much memory. The limit
is set via the memory_limit option in the configuration file:

memory_limit = 8M

You can limit the size of each POST request. Other request methods can have a body,
and this option applies to all of them. You will need to increase this value from the
default value specified below if you plan to allow large file uploads:

post_max_size = 8M

The max_input_time option limits the time a PHP script can spend processing input.
The default limit (60 seconds) is likely to be a problem if clients are on a slow link
uploading files. Assuming a speed of 5 KBps, they can upload only 300 KB before
being cut off, so consider increasing this limit:

max_input_time = 60

The max_execution_time option limits the time a PHP script spends running (exclud-
ing any external system calls). The default allowance of 30 seconds is too long, but
you should not decrease it immediately. Instead, measure the performance of the
application over its lifetime and decrease this value if it is safe to do so (e.g., all
scripts finish way before 30 seconds expire):

max_execution_time = 30

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: PHP

Controlling File Uploads
File uploads can be turned on and off using the file_uploads directive. If you do not
intend to use file uploads on the web site, turn the feature off. The code that sup-
ports file uploads can be complex and a place where frequent programming errors
occur. PHP has suffered from vulnerability in the file upload code in the past; you
can disable file uploading via the following:

file_uploads = Off

If you need the file upload functionality, you need to be aware of a parameter limit-
ing the size of a file uploaded. More than one file can be uploaded to the server in
one request. The name of the option may lead you to believe the limit applies to each
separate file, but that is not the case. The option value applies to the sum of the sizes
of all files uploaded in one go. Here is the default value:

upload_max_filesize = 2M

Remember to set the option post_max_size to a value that is slightly higher than your
upload_max_filesize value.

As a file is uploaded through the web server before it is processed by a script, it is
stored on a temporary location on disk. Unless you specify otherwise, the system
default (normally /tmp on Unix systems) will be used. Consider changing this loca-
tion in the php.ini configuration file:

upload_tmp_dir = /var/www/tmp

Remember to create the folder:

cd /var/www
mkdir tmp
chown httpd tmp

Increasing Session Security
HTTP is a stateless protocol. This means that the web server treats each user request
on its own and does not take into account what happened before. The web server
does not even remember what happened before. Stateless operation is inconvenient
to web application programmers, who invented sessions to group requests together.

Sessions work by assigning a unique piece of information to the user when she
arrives at the site for the first time. This piece of information is called a session
identifier (sessionid for short) The mechanism used for this assignment is devised to
have the user (more specifically, the user’s browser) return the information back to
the server on every subsequent request. The server uses the sessionid information to
find its notes on the user and remember the past. Since a session identifier is all it
takes for someone to be recognized as a previous user, it behaves like a temporary
password. If you knew someone’s session identifier, you could connect to the appli-
cation she was using and assume the same privileges she has.

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuration | 63

Session support in PHP enables an application to remember a user, keeping some
information between requests. By default, the filesystem is used to store the informa-
tion, usually in the /tmp folder. If you take a look at the folder where PHP keeps its
session information, you will see a list of files with names similar to this one:

sess_ed62a322c949ea7cf92c4d985a9e2629

Closer analysis will reveal that PHP uses session identifiers when it constructs file
names for session data (the session identifier is the part after sess_). As a conse-
quence, any system user who can list the contents of the /tmp folder can learn all the
active session identifiers and hijack sessions of any of the active users. To prevent
this, you need to instruct PHP to store session data in a separate folder, which only
the Apache user (httpd) can access. Create the folder first:

cd /var/www
mkdir sessions
chown httpd sessions

Then configure PHP to store session data at the new location:

session.save_path = /var/www/sessions

This configuration change does not solve all problems though. System users will not
be able to learn about session identifiers if the permissions for the folder /var/www/
sessions are configured to deny them access. Still, for any user that can write and exe-
cute a PHP script on the server, it will be trivial to write a program to retrieve the list
of sessions because the script will run as the web server user.

Multiple applications, user groups, or web sites should never share the
same session directory. If they do, they might be able to hijack each
other’s sessions. Create a separate session directory for each different
purpose.

Casual session ID leaks and hijacking attempts can be prevented with the help of the
session.referer_check option. When enabled, PHP will check the contents of the
Referer request header for the string you provide. You should supply a part of the
site domain name:

comment
session.referer_check = apachesecurity.net

Since the Referer request header contains the URL of the user’s previous page, it will
contain the site’s domain name for all legitimate requests. But if someone follows a
link from somewhere else and arrives at your site with a valid session ID, PHP will
reject it. You should not take this protection seriously. This option was designed to
invalidate sessions that were compromised by users accidentally posting links that
contained session IDs. However, it will also protect from simple cross-site request
forgery (CSRF) attacks, where a malicious site creates requests to another site using

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: PHP

the existing user session. When the attacker completely controls the request, he also
controls the contents of the Referer header, making this feature ineffective.

When this option is enabled, then even users whose browsers support cookies (and
are thus using cookies for session management) will have their sessions invalidated
if they follow a link from somewhere else back to your site. Therefore, since
session.referer_check does not solve any problem in its entirety, I recommend that
a proper session hijack defense be built into the software, as described in
Chapter 10.

Setting Safe Mode Options
Safe mode (http://www.php.net/manual/en/features.safe-mode.php) is an attempt of
PHP developers to enhance security of PHP deployments. Once this mode is enabled,
the PHP engine imposes a series of restrictions, making script execution more secure.
Many developers argue that it is not the job of PHP to fix security problems caused
by the flawed architecture of server-side programming. (This subject is discussed in
detail in Chapter 6.) However, since there is no indication this model will be changed
any time soon, the only choice is to go ahead and do what can be done now.

Safe mode is implemented as a set of special checks in the PHP source code, and
checks are not guaranteed to exist in all places. Occasionally, someone reports a hole
in the safe mode and PHP developers fix it. Furthermore, there may be ways to
exploit the functionality of PHP modules included in the installation to gain unre-
stricted access.

That being said, the PHP safe mode is a useful tool. We start by turning on the safe
mode:

safe_mode = On

File access restrictions

The biggest impact of safe mode is on file access. When in safe mode, an additional
check is performed before each filesystem operation. For the operation to proceed,
PHP will insist that the uid of the file owner matches the uid of the user account own-
ing the script. This is similar to how Unix permissions work.

You can expect problems in the following cases:

• If more than one user has write access for the web server tree. Sooner or later, a
script owned by one user will want to access a file owned by another.

• If applications create files at runtime.

This second case is the reason programmers hate the safe mode. Most PHP applica-
tions are content management systems (no surprise there since PHP is probably the
best solution for web site construction), and they all create files. (These issues are
covered in Chapter 6.)

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuration | 65

The easiest solution is to have the developer and Apache accounts in the same group,
and relax uid checking, using gid checking instead:

safe_mode_gid = On

Since all PHP scripts include other scripts (libraries), special provisions can be
made for this operation. If a directory is in the include path and specified in the
safe_mode_include_dir directive, the uid/gid check will be bypassed.

Environment variable restrictions

Write access to environment variables (using the putenv() function) is restricted in
safe mode. The first of the following two directives, safe_mode_allowed_env_vars,
contains a comma-delimited list of prefixes indicating which environment variables
may be modified. The second directive, safe_mode_protected_env_vars, forbids cer-
tain variables (again, comma-delimited if more than one) from being altered.

allow modification of variables beginning with PHP_
safe_mode_allowed_env_vars = PHP_
no one is allowed to modify LD_LIBRARY_PATH
safe_mode_protected_env_vars = LD_LIBRARY_PATH

External process execution restrictions

Safe mode puts restrictions on external process execution. Only binaries in the safe
directory can be executed from PHP scripts:

safe_mode_exec_dir = /var/www/bin

The following functions are affected:

• exec()

• system()

• passthru()

• popen()

Some methods of program execution do not work in safe mode:

shell_exec()
Disabled in safe mode

backtick operator
Disabled in safe mode

Other safe mode restrictions

The behavior of many other less significant functions, parameters, and variables is
subtly changed in safe mode. I mention the changes likely to affect many people in

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: PHP

the following list, but the full list of (constantly changing) safe mode restrictions can
be accessed at http://www.php.net/manual/en/features.safe-mode.functions.php:

dl()
Disabled in safe mode.

set_time_limit()
Has no effect in safe mode. The other way to change the maximum execution
time, through the use of the max_execution_time directive, also does not work in
safe mode.

header()
In safe mode, the uid of the script is appended to the WWW-Authenticate HTTP
header.

apache_request_headers()
In safe mode, headers beginning with Authorization are not returned.

mail()
The fifth parameter (additional_parameters) is disabled. This parameter is nor-
mally submitted on the command line to the program that sends mail (e.g.,
sendmail).

PHP_AUTH variables
The variables PHP_AUTH_USER, PHP_AUTH_PW, and AUTH_TYPE are unavailable in safe
mode.

Advanced PHP Hardening
When every little bit of additional security counts, you can resort to modifying PHP.
In this section, I present two approaches: one that uses PHP extension capabilities to
change its behavior without changing the source code, and another that goes all the
way and modifies the PHP source code to add an additional security layer.

PHP 5 SAPI Input Hooks
In PHP, SAPI stands for Server Abstraction Application Programming Interface and is a
part of PHP that connects the engine with the environment it is running in. One SAPI
is used when PHP is running as an Apache module, a second when running as a CGI
script, and a third when running from the command line. Of interest to us are the

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Advanced PHP Hardening | 67

three input callback hooks that allow changes to be made to the way PHP handles
script input data:

input_filter
Called before each script parameter is added to the list of parameters. The hook
is given an opportunity to modify the value of the parameter and to accept or
refuse its addition to the list.

treat_data
Called to parse and transform script parameters from their raw format into indi-
vidual parameters with names and values.

default_post_reader
Called to handle a POST request that does not have a handler associated with it.

The input_filter hook is the most useful of all three. A new implementation of this
hook can be added through a custom PHP extension and registered with the engine
using the sapi_register_input_filter() function. The PHP 5 distribution comes with
an input filter example (the file README.input_filter also available at http://cvs.php.net/
co.php/php-src/README.input_filter), which is designed to strip all HTML markup
(using the strip_tags() function) from script parameters. You can use this file as a
starting point for your own extension.

A similar solution can be implemented without resorting to writing native PHP
extensions. Using the auto_prepend_file configuration option to prepend input sani-
tization code for every script that is executed will have similar results in most cases.
However, only the direct, native-code approach works in the following situations:

• If you want to enforce a strong site-wide policy that cannot be avoided

• If the operations you want to perform are too slow to be implemented in PHP
itself

• When the operations simply require direct access to the PHP engine

Hardened-PHP
Hardened-PHP (http://www.hardened-php.net) is a project that has a goal of remedy-
ing some of the shortcomings present in the mainstream PHP distribution. It’s a
young and promising project led by Stefan Esser. At the time of this writing the
author was offering support for the latest releases in both PHP branches (4.x and 5.x).
Here are some of the features this patch offers:

• An input filter hook ported to 4.x from PHP 5

• An extension (called varfilter) that takes advantage of the input filter hook and
performs checks and enforces limits on script variables: maximum variable name
length, maximum variable value length, maximum number of variables, and
maximum number of dimensions in array variables

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: PHP

• Increased resistance to buffer overflow attacks

• Increased resistance to format string attacks

• Support for syslog (to report detected attacks)

• Prevention of code execution exploits by detecting and rejecting cases where
attempts are made to include remote files (via include() or require()) or files
that have just been uploaded

• Prevention of null byte attacks in include operations

Patches to the mainstream distributions can be difficult to justify. Unlike the real
thing, which is tested by many users, patched versions may contain not widely
known flaws. To be safe, you should at least read the patch code casually to see if
you are confident in applying it to your system. Hopefully, some of the features pro-
vided by this patch will make it back into the main branch. The best feature of the
patch is the additional protection against remote code execution. If you are in a situ-
ation where you cannot disable remote code inclusion (via allow_url_fopen), con-
sider using this patch.

