
mod_rewrite Cookbook
Rich Bowen

Asbury College
Apache Software Foundation

rbowen@apache.org

1

mailto:rbowen@apache.org
mailto:rbowen@apache.org

Agenda

Common tasks with mod_rewrite

A few advanced rewrite rules

Some things you didn’t know mod_rewrite
could do

2

Quick intro

Last time I did this, I misjudged my
audience, so ...

3

Regex

How many of you are brand-new to
mod_rewrite?

4

Oh

That many, hmm? Well, let’s start with a few
basics

5

RewriteRule

Apply a regex to a request

Modify a request in some way

Alter aspects of the request in addition to
the URI

6

RewriteRule Syntax

Which means ...

If the request looks like THIS, send it HERE
instead

7

RewriteRule PATTERN TARGET

RewriteRule Syntax

The pattern is a regular expression

A substring match

Describes what the request might look like

8

RewriteRule PATTERN TARGET

RewriteRule Syntax

The target is a URI, or perhaps a URL, or
maybe a file path, depending on context

9

RewriteRule PATTERN TARGET

RewriteRule Syntax

The rule may be modified by one or more
flags

10

RewriteRule PATTERN TARGET [X]

When not to

The most important thing is to know when
not to use mod_rewrite

Be aware of the tools to do things that
mod_write is commonly misused for

11

Redirect

12

Redirect /one http://example.com/two

RedirectMatch

13

RedirectMatch [mM]onkey \
 http://example.com/ape

Alias

14

Alias /images /var/upload/img

AliasMatch

Like Alias, but with regular expressions

15

A word about SEO

“Pretty” URLs don’t guarantee search engine
ranking

Most “SEO” is misinformation

Content causes people to link to you, which,
in turn, drives search engine rankings

Don’t believe people who claim that they can
guarantee the top spot on Google. They’re
lying.

16

Mapping path to QS

Mapping http://example.com/one/two to
http://example.com/index.php?x=one&y=two

17

http://example.com/one/two
http://example.com/one/two
http://example.com/index.php?x=one&y=two
http://example.com/index.php?x=one&y=two

Step one
First, the easy bit - map the path
information to arguments:

18

RewriteEngine On
RewriteRule ^/(.*)/(.*) \
 /index.php?one=$1&two=$2 [PT]

Details

Starts with slash:

19

RewriteEngine On
RewriteRule ^/(.*)/(.*) \
 /index.php?one=$1&two=$2 [PT]

Details

Followed by some stuff

20

RewriteEngine On
RewriteRule ^/(.*)/(.*) \
 /index.php?one=$1&two=$2 [PT]

Details

Then another slash

21

RewriteEngine On
RewriteRule ^/(.*)/(.*) \
 /index.php?one=$1&two=$2 [PT]

Details

And some more stuff

22

RewriteEngine On
RewriteRule ^/(.*)/(.*) \
 /index.php?one=$1&two=$2 [PT]

Details

The first bit becomes $1

23

RewriteEngine On
RewriteRule ^/(.*)/(.*) \
 /index.php?one=$1&two=$2 [PT]

Details

The second bit becomes $2

24

RewriteEngine On
RewriteRule ^/(.*)/(.*) \
 /index.php?one=$1&two=$2 [PT]

Details

And [PT] ensures that php gets a whack at it

25

RewriteEngine On
RewriteRule ^/(.*)/(.*) \
 /index.php?one=$1&two=$2 [PT]

[PT]

Passthrough

Sends the URI back to the URL-mapping
engine

Ensures that things like Aliases, Redirects
are honored

Ensures that handlers (like PHP) fire

26

Unfortunately ...

The rule is not precise enough

It’s rather prone to matching the wrong
things

27

Better ...
.* is too greedy. Use something more specific

[^/] matches all “not slash” characters

28

RewriteEngine On
RewriteRule ^/([^/]*)/([^/]*) \
 /index.php?one=$1&two=$2 [PT]

Better ...
Thus, for /one/two/three, $1 is ‘one’ and $2
is ‘two’

‘three’ would be silently discarded

29

RewriteEngine On
RewriteRule ^/([^/]*)/([^/]*) \
 /index.php?one=$1&two=$2 [PT]

Legitimate files

Requests for real files would run afoul of
this

/images/toad.gif would be mapped to /
index.php?one=images&two=toad.gif

That’s not what we want

What is to be done? Alas and alack!

30

Ignore files, directories
If it’s not a file

And not a directory

31

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^/([^/]*)/([^/]*) \
 /index.php?one=$1&two=$2 [PT]

Existing Aliases, etc
RewriteRule runs before things like Aliases
and Redirects

May need to explicitly exempt them

32

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_URI} \
 !^/(icons|errors|styles|js)
RewriteRule ^/([^/]*)/([^/]*) \
 /index.php?one=$1&two=$2 [PT]

Existing Aliases, etc
RewriteRule runs before things like Aliases
and Redirects

May need to explicitly exempt them

33

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_URI} \
 !^/(icons|errors|styles|js)
RewriteRule ^/([^/]*)/([^/]*) \
 /index.php?one=$1&two=$2 [PT]

.htaccess
Remember that in .htaccess files or
<Directory> scope, you’ll need to remove
additional path information

34

RewriteEngine On
RewriteCond /var/www/%{REQUEST_FILENAME} !-f
RewriteCond /var/www/%{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_URI} \
 !^(icons|errors|styles|js)
RewriteRule ^([^/]*)/([^/]*) \
 index.php?one=$1&two=$2 [PT]

QSA
If you need to preserve existing query string
arguments, use QSA:

35

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_URI} \
 !^/(icons|errors|styles|js)
RewriteRule ^/([^/]*)/([^/]*) \
 /index.php?one=$1&two=$2 [PT,QSA]

QSA

Query String Append (qsappend)

Existing query string is preserved

New stuff is tacked on to the end

36

Virtual Hosts

Dynamic name-based vhosts

37

Consider mod_vhost_alias

Always try to avoid mod_rewrite if possible

If there’s another way, it’s pretty much
guaranteed to be more efficient.

38

But ...

mod_vhost_alias has some unfortunate
shortcomings

(That’s the polite way to say it)

39

Vhosts with mod_rewrite

First, you’ll need the hostname

RewriteRule doesn’t have access to the
hostname

You’ll need to use RewriteCond for this

40

Hostname
Snag the first part of the hostname

Copy the entire request into a file path

41

RewriteEngine On
RewriteCond %{HTTP_HOST} (.*)\.example\.com [NC]
RewriteRule (.*) /home/%1/www$1

[NC]

NC matches in a case-insensitive manner

42

RewriteEngine On
RewriteCond %{HTTP_HOST} (.*)\.example\.com [NC]
RewriteRule (.*) /home/%1/www$1

Details
This will need to go in a wildcard virtual host

ServerAlias *.example.com

Must have that in a wildcard DNS record, too

The request uri starts with / so $1 does too

43

RewriteEngine On
RewriteCond %{HTTP_HOST} (.*)\.example\.com [NC]
RewriteRule (.*) /home/%1/www$1

Aliases
RewriteRules run prior to Aliases

Exclude that from the rewrite

44

Alias /icons/ /var/www/icons/

RewriteEngine On
RewriteCond %{REQUEST_URI} !^/icons/
RewriteCond %{HTTP_HOST} (.*)\.example\.com [NC]
RewriteRule (.*) /home/%1/www$1

Using [S] as a “goto”

RewriteCond applies ONLY to the
RewriteRule immediately following it

What if you want a RewriteCond to apply to
multiple rules?

Use the [S] flag to create a logical block

45

RewriteCond
What you want:

Unfortunately, that’s not what that does ...

46

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
Do BOTH of the following
RewriteRule ^/icons/(.*) /var/www/icons/$1
RewriteRule (.*) /home/bob/www$1

[S]
Instead, reverse the RewriteCond and use [S]

47

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} -f
Skip the next two rules ...
RewriteRule ^ - [S=2]
RewriteRule ^/icons/(.*) /var/www/icons/$1 [L]
RewriteRule (.*) /home/bob/www$1 [L]

[S]

[L] (last) says “do it now”. If the first rule
runs, the second one won’t.

48

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} -f
Skip the next two rules ...
RewriteRule ^ - [S=2]
RewriteRule ^/icons/(.*) /var/www/icons/$1 [L]
RewriteRule (.*) /home/bob/www$1 [L]

URL Handler

aka “rewrite everything”

All non-file requests go to handler.php

49

Two usual approaches:

Rewrite the request as a query string

Just rewrite, and let the handler figure it
out

I like the second approach a lot more, but it’s
less common.

50

Rewrite as query string
The original request is passed to the handler
as a query string:

51

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule (.*) /index.php?q=$1 [PT,L,QSA]

Details

Don’t rewrite requests that already map to
valid files

This should handle images, css, js, existing
html files, etc

52

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule (.*) /index.php?q=$1 [PT,L,QSA]

Details
Will NOT protect Aliases - you’ll need to
explicitly exclude those with RewriteCond

53

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} \
 !^/(icons|cgi-bin)
RewriteRule (.*) /index.php?q=$1 [PT,L,QSA]

Or ...
Rewrite to the handler, let it figure it out

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} \
 !^/(icons|cgi-bin)
RewriteRule (.*) /index.php [PT,L,QSA]

Handler
For example:

<?php
$uri = $_SERVER[‘REQUEST_URI’];
$parts = explode(‘/’, $uri);
// ... etc
?>

Basic RewriteMap

1-1 mapping using RewriteMap

httxt2dbm and dbm rewrite maps

56

RewriteMap

Creates a rewrite map or function

Simplifies complicated RewriteRule directives

Can call an external source for the rewrite
logic

57

Internal RewriteMap
RewriteMap int

touper

tolower

escape

unescape

58

Lower-case all requests
RewriteMap lc int:tolower
RewriteRule (.*) ${lc:$1}

mod_speling

If you’re trying to make URLs case
insensitive, mod_speling might be what you’re
looking for

CheckSpelling On

59

Lower-case all requests
RewriteMap lc int:tolower
RewriteRule (.*) ${lc:$1}

RewriteMap txt
Large number of static 1-1 mappings

60

doberman /dogs.php?breed=278
poodle /dogs.php?breed=78
collie /dogs.php?breed=98
terrier /dogs.php?breed=148
mutt /dogs.php?breed=2
alsatian /dogs.php?breed=113

dogs.txt

RewriteMap txt:

Map http://example.com/dog/poodle to the
correct URL

61

RewriteMap dogs txt:/etc/dogs.txt
RewriteRule ^/dog/(.*) ${dogs:$1}

http://example.com/dog/poodle
http://example.com/dog/poodle

Default value

What if it doesn’t match anything?

62

RewriteMap dogs txt:/etc/dogs.txt
RewriteRule ^/dog/(.*) ${dogs:$1|/index.php}

Updates

mod_rewrite will reload the file if the mdate
is updated

Otherwise, contents of file are cached in
memory

63

Caveat

File is unindexed - lookups are slow

64

Faster

Convert the text file to a dbm

Indexed - faster lookups

65

httxt2dbm

New in 2.x

Converts to a dbm

The example Perl code in the 1.3 docs doesn’t
actually work

66

httxt2dbm

67

httxt2dbm -i dogs.txt -o dogs.map

dbm

Change previous config for dbm

68

RewriteMap dogs dbm:dogs.map
RewriteRule ^/dog/(.*) ${dogs:$1|/index.php}

RewriteMap prg

Simple Perl-based RewriteMap

69

Caveats

One copy running - all child processes wait
for it

Should use a RewriteLock to avoid contention

Use only as a last resort

70

The basics

71

RewriteEngine On
RewriteMap name prg:/var/www/bin/map.pl
RewriteRule (.*) ${name:$1}

Map script
Request comes in on STDIN

Do something useful with it

Response output on STDOUT

72

#!/usr/bin/perl
while ($req = <STDIN>) {
 $resp = something_useful($req);
 print $resp;
}

Standard example

Convert “-” to “_” everywhere in a URI

Necessary because RewriteRule doesn’t have
a “global replace” flag

Note that there’s a better way to do this.
(I’ll show you in a moment.)

73

dash2score

Run it on any URI which contains a dash:

74

RewriteMap d2s prg:/www/bin/dash2score.pl
RewriteRule (.*-.*) ${d2s:$1} [R]

dash2score.pl

The script:

75

#!/usr/bin/perl
$| = 1;
while ($req = <STDIN>) {
 $req =~ s/-/_/g;
 print $req;
}

dash2score.pl

Turn off buffering

76

#!/usr/bin/perl
$| = 1;
while ($req = <STDIN>) {
 $req =~ s/-/_/g;
 print $req;
}

dash2score.pl

Loop for the lifetime of the server

77

#!/usr/bin/perl
$| = 1;
while ($req = <STDIN>) {
 $req =~ s/-/_/g;
 print $req;
}

dash2score.pl

Replace “-” with “_” globally

78

#!/usr/bin/perl
$| = 1;
while ($req = <STDIN>) {
 $req =~ s/-/_/g;
 print $req;
}

dash2score.pl

Print the resulting string

79

#!/usr/bin/perl
$| = 1;
while ($req = <STDIN>) {
 $req =~ s/-/_/g;
 print $req;
}

Better way

Now I will show you a more excellent way

The [N] flag actually does have the
occasional use

80

Replace “-” with “_” and start over
RewriteRule (.*)-(.*) $1_$2 [N]

So ...

It’s a simple example

But not particularly practical

Useful examples are too complicated to fit on
the screen

See also the dbd: method ...

81

dbd:
New in 2.3

Store rewrite maps in a sql database

82

DBDriver mysql
DBDParams \
 host=localhost,user=bob,pass=larry,dbname=rewrite
RewriteMap mymap \
 “dbd: select dest from rewrite where uri = %s”

Look elsewhere

If the file isn’t here, look there

Smarter than just a 404 error page

Useful when you’ve got files stored in a
couple possible locations

83

-f
Check for the existence of a file

If it’s not there, look somewhere else

84

<Directory /var/www/one>
RewriteEngine On
RewriteCond /var/www/one/%{REQUEST_FILENAME} !-f
RewriteRule (.*) /var/www/two/$1
</Directory>

<Directory>
In a <Directory> everything is relative to the
local path

85

<Directory /var/www/one>
RewriteEngine On
RewriteCond /var/www/one/%{REQUEST_FILENAME} !-f
RewriteRule (.*) /var/www/two/$1
</Directory>

Or, more than one place

86

<Directory /var/www/one>
RewriteEngine On
RewriteCond /var/www/one/%{REQUEST_FILENAME} -f
RewriteRule (.*) /var/www/one/$1 [L]
RewriteCond /var/www/two/%{REQUEST_FILENAME} -f
RewriteRule (.*) /var/www/two/$1 [L]
RewriteCond /var/www/three/%{REQUEST_FILENAME} -f
RewriteRule (.*) /var/www/three/$1 [L]
</Directory>

ErrorDocument
Note that you could accomplish the same
thing with an ErrorDocument handler script

87

ErrorDocument 404 /handler/404.cgi

Image theft

“Image theft” refers to folks including their
images in their web pages

Uses your bandwidth, your copyright

Want to deny requests that don’t originate
from your own pages

Can check the referer

88

Referer
Ensure that the referer comes from here

If the referer isn’t from here ...

89

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteRule \.(gif|jpg|png)$ - [NC,F]

Image request

And if the request was for an image ...

90

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteRule \.(gif|jpg|png)$ - [NC,F]

Forbidden

Don’t rewrite it, just fail the request

91

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteRule \.(gif|jpg|png)$ - [NC,F]

[NC]

upper- or lower-case

92

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteRule \.(gif|jpg|png)$ - [NC,F]

no Referer?
Ensure that there is a non-null referer

Some requests won’t send one

93

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteCond %{HTTP_REFERER} .
RewriteRule \.(gif|jpg|png)$ - [NC,F]

[F]
This just forbids the request

What if you want to ...

94

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteCond %{HTTP_REFERER} .
RewriteRule \.(gif|jpg|png)$ - [NC,F]

Another image

Display a “go away” image instead

95

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteCond %{HTTP_REFERER} .
RewriteRule \.(gif|jpg|png)$ \
 /images/goaway.gif [PT,L]

Another site

Or perhaps another site entirely

96

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteCond %{HTTP_REFERER} .
RewriteRule \.(gif|jpg|png)$ \
 http://other.site.com/images/x.jpg [R,L]

http://other.site.com/images/x.jpg
http://other.site.com/images/x.jpg

Where they came from

Or just back where they came from

97

RewriteEngine On
RewriteCond %{HTTP_REFERER} !myhost.com
RewriteCond %{HTTP_REFERER} .
RewriteRule \.(gif|jpg|png)$ \
 %{HTTP_REFERER} [R,L]

Canonical hostname

Enforce a particular hostname

Perhaps cookies require a particular
hostname

Or perhaps it’s just preferred

98

Canonical hostname
If it’s NOT the preferred hostname

99

<VirtualHost *:80>
 ServerName www.example.com
 ServerAlias example.com

 RewriteEngine On
 RewriteCond %{HTTP_HOST} !=www.example.com
 RewriteRule (.*) http://www.example.com$1 [R,L]
</VirtualHost>

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com

Canonical hostname
Then redirect it there

100

<VirtualHost *:80>
 ServerName www.example.com
 ServerAlias example.com

 RewriteEngine On
 RewriteCond %{HTTP_HOST} !=www.example.com
 RewriteRule (.*) http://www.example.com$1 [R,L]
</VirtualHost>

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com

.htaccess
Or, if you have to put it in a .htaccess file:

101

 RewriteEngine On
 RewriteCond %{HTTP_HOST} !=www.example.com
 RewriteRule (.*) http://www.example.com/$1 [R,L]

http://www.example.com
http://www.example.com

Canonical hostname
May make sense to have two vhosts:

102

<VirtualHost *:80>
 ServerName www.example.com
 # ...
</VirtualHost>

<VirtualHost *:80>
 ServerName example.com
 RedirectMatch /(.*) http://www.example.com/$1
</VirtualHost>

http://www.example.com
http://www.example.com

http2https

Redirect http requests to https

Require https on certain resources

103

Like canonical hostname

Special case of the previous rule

Sort of

104

HTTPS

If it’s not already HTTPS

105

RewriteEngine On
RewriteCond %{HTTPS} !=on
RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]

HTTPS

Redirect it

106

RewriteEngine On
RewriteCond %{HTTPS} !=on
RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]

Clever trick
Usable in .htaccess or main config

Slash is optional

107

RewriteEngine On
RewriteCond %{HTTPS} !=on
RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]

Just one directory

Some folks want one particular directory
SSL

And everything else NOT SSL

I think this is silly, but the customer is
always right

108

One directory

109

RewriteEngine On
RewriteRule %{HTTPS} !=on
RewriteRule ^/?secure(.*) \
 https://%{SERVER_NAME}/secure$1 [R,L]

RewriteRule %{HTTPS} =on
RewriteCond %{HTTP_REQUEST} !^/?secure
RewriteRule ^/?(.*) \
 http://%{SERVER_NAME}/$1 [R,L]

One directory

110

RewriteEngine On
RewriteRule %{HTTPS} !=on
RewriteRule ^/?secure(.*) \
 https://%{SERVER_NAME}/secure$1 [R,L]

RewriteRule %{HTTPS} =on
RewriteCond %{HTTP_REQUEST} !^/?secure
RewriteRule ^/?(.*) \
 http://%{SERVER_NAME}/$1 [R,L]

Caveat

HTTPS pages containing non-HTTPS content
(images, css, js) will generate browser errors.

Ensure that these files are available via
HTTP, HTTPS

111

Proxy

Using rewriterules to force Proxy

112

Images elsewhere

113

RewriteEngine On
RewriteRule (.*\.(jpg|gif|png)) \
 http://images.example.com$1 [P]
ProxyPassReverse / http://images.example.com/

Server Migration
Proxy 404 requests through to old server

114

RewriteEngine On
RewriteCond %{REQUEST_URI} !-U
RewriteRule (.*) http://old.server$1 [P]

-U
-U' (is existing URL, via subrequest)

Checks whether or not TestString is a valid URL,
accessible via all the server's currently-configured
access controls for that path. This uses an internal
subrequest to do the check, so use it with care - it can
impact your server's performance!

115

RewriteEngine On
RewriteCond %{REQUEST_URI} !-U
RewriteRule (.*) http://old.server$1 [P]

lighttpd for static

php stuff here, everything else on lighttpd

116

RewriteEngine On
RewriteCond %{REQUEST_URI} !\.php$
RewriteRule (.*) http://x.example.com$1 [P]
ProxyPassReverse / http://x.example.com/

ProxyPassReverse
Redirects usually contain the hostname

Ensures that Redirects come from here
instead of from there

117

RewriteEngine On
RewriteCond %{REQUEST_URI} !\.php$
RewriteRule (.*) http://x.example.com$1 [P]
ProxyPassReverse / http://x.example.com/

PHP when no file ext

Force files with no file extension to be
handled by php

118

Allows you to have URLs without the
annoying “.php” on the end.

119

RewriteEngine On
RewriteRule !\. - [H=application/x-httpd-php]

Doesn’t contain a dot

120

RewriteEngine On
RewriteRule !\. - [H=application/x-httpd-php]

Don’t rewrite it

121

RewriteEngine On
RewriteRule !\. - [H=application/x-httpd-php]

Force it to use the php handler

122

RewriteEngine On
RewriteRule !\. - [H=application/x-httpd-php]

Use PATH_INFO

Now you can have URLs like

Use $_SERVER[PATH_INFO] to grab the
additional bits of the request

123

http://example.com/handler/arg1/arg2

mod_negotiation

Might be able to do the same thing with
mod_negotiation

Options +MultiViews

124

Reading the RewriteLog

Can’t go in a .htaccess file

Needs to be in global or vhost scope

125

RewriteLog logs/rewrite.log
RewriteLogLevel 9

Reading the RewriteLog

Location of the log file

Relative to ServerRoot

126

RewriteLog logs/rewrite.log
RewriteLogLevel 9

Reading the RewriteLog

Number from 0 to 9

9 most verbose

Below 3 not particularly useful

127

RewriteLog logs/rewrite.log
RewriteLogLevel 9

Log entries

Let’s look at a few log entries:

128

I recommend ignoring this bit:

129

203.167.144.193 - - [05/Nov/2007:22:29:53
--0500] [wooga.drbacchus.com/sid#b93592c0]
[rid#b95c6c98/initial] (3) applying pattern '^/
books?/(.+)' to uri '/favicon.ico'

In fact, before we go on
I actually use a piped lot handler to remove
this superfluous stuff

Like so ...

130

RewriteLog |/usr/local/bin/rewrite_log_pipe
RewriteLogLevel 9

with ...

131

RewriteLog |/usr/local/bin/rewrite_log_pipe
RewriteLogLevel 9

#!/usr/bin/perl
$|++;

open (F, ">>/tmp/rewrite");
select F;
while (<>) {
 s/^.*(\(\d\).*)/$1/;
 print;
}

Look for the (1) or (2) bit

drop everything before that

132

#!/usr/bin/perl
$|++;

open (F, ">>/tmp/rewrite");
select F;
while (<>) {
 s/^.*(\(\d\).*)/$1/;
 print;
}

Results in:

133

(4) RewriteCond: input='wooga.drbacchus.com' pattern='!^wooga\.drbacchus
\.com' [NC] => not-matched
(3) applying pattern 'wp-rss2.php' to uri '/index.php'
(3) applying pattern '(journal/)?index.rdf' to uri '/index.php'
(3) applying pattern '^/wordpress/wp-comments' to uri '/index.php'
(3) applying pattern '^/perm/(.*)' to uri '/index.php'
(3) applying pattern '^/articles?/(.*)' to uri '/index.php'
(3) applying pattern '^/blog/(.*)' to uri '/index.php'
(3) applying pattern '^/book/(mod)?_?rewrite' to uri '/index.php'
(3) applying pattern '^/book/cookbook' to uri '/index.php'
(3) applying pattern '^/book/2.2' to uri '/index.php'
(3) applying pattern '^/booklink/(.*)' to uri '/index.php'
(3) applying pattern '^/books?/(.+)' to uri '/index.php'
(1) pass through /index.php

Requested URI

134

(4) RewriteCond: input='wooga.drbacchus.com' pattern='!^wooga\.drbacchus
\.com' [NC] => not-matched
(3) applying pattern 'wp-rss2.php' to uri '/index.php'
(3) applying pattern '(journal/)?index.rdf' to uri '/index.php'
(3) applying pattern '^/wordpress/wp-comments' to uri '/index.php'
(3) applying pattern '^/perm/(.*)' to uri '/index.php'
(3) applying pattern '^/articles?/(.*)' to uri '/index.php'
(3) applying pattern '^/blog/(.*)' to uri '/index.php'
(3) applying pattern '^/book/(mod)?_?rewrite' to uri '/index.php'
(3) applying pattern '^/book/cookbook' to uri '/index.php'
(3) applying pattern '^/book/2.2' to uri '/index.php'
(3) applying pattern '^/booklink/(.*)' to uri '/index.php'
(3) applying pattern '^/books?/(.+)' to uri '/index.php'
(1) pass through /index.php

Patterns applied

135

(4) RewriteCond: input='wooga.drbacchus.com' pattern='!^wooga\.drbacchus
\.com' [NC] => not-matched
(3) applying pattern 'wp-rss2.php' to uri '/index.php'
(3) applying pattern '(journal/)?index.rdf' to uri '/index.php'
(3) applying pattern '^/wordpress/wp-comments' to uri '/index.php'
(3) applying pattern '^/perm/(.*)' to uri '/index.php'
(3) applying pattern '^/articles?/(.*)' to uri '/index.php'
(3) applying pattern '^/blog/(.*)' to uri '/index.php'
(3) applying pattern '^/book/(mod)?_?rewrite' to uri '/index.php'
(3) applying pattern '^/book/cookbook' to uri '/index.php'
(3) applying pattern '^/book/2.2' to uri '/index.php'
(3) applying pattern '^/booklink/(.*)' to uri '/index.php'
(3) applying pattern '^/books?/(.+)' to uri '/index.php'
(1) pass through /index.php

None of them matched

136

(4) RewriteCond: input='wooga.drbacchus.com' pattern='!^wooga\.drbacchus
\.com' [NC] => not-matched
(3) applying pattern 'wp-rss2.php' to uri '/index.php'
(3) applying pattern '(journal/)?index.rdf' to uri '/index.php'
(3) applying pattern '^/wordpress/wp-comments' to uri '/index.php'
(3) applying pattern '^/perm/(.*)' to uri '/index.php'
(3) applying pattern '^/articles?/(.*)' to uri '/index.php'
(3) applying pattern '^/blog/(.*)' to uri '/index.php'
(3) applying pattern '^/book/(mod)?_?rewrite' to uri '/index.php'
(3) applying pattern '^/book/cookbook' to uri '/index.php'
(3) applying pattern '^/book/2.2' to uri '/index.php'
(3) applying pattern '^/booklink/(.*)' to uri '/index.php'
(3) applying pattern '^/books?/(.+)' to uri '/index.php'
(1) pass through /index.php

And now

We can actually make some sense of what’s
happening

Less inscrutable noise

Yes, it means something, but not to normal
people

137

Examples

This was the result of

138

(4) RewriteCond: input='wooga.drbacchus.com' pattern='!^wooga\.drbacchus
\.com' [NC] => not-matched

RewriteCond %{HTTP_HOST} \
 !^wooga\.drbacchus\.com [NC]

Examples

It shows what the input variable looked like

139

(4) RewriteCond: input='wooga.drbacchus.com' pattern='!^wooga\.drbacchus
\.com' [NC] => not-matched

RewriteCond %{HTTP_HOST} \
 !^wooga\.drbacchus\.com [NC]

Examples

And what pattern was applied

140

(4) RewriteCond: input='wooga.drbacchus.com' pattern='!^wooga\.drbacchus
\.com' [NC] => not-matched

RewriteCond %{HTTP_HOST} \
 !^wooga\.drbacchus\.com [NC]

Examples

As well as what happened

141

(4) RewriteCond: input='wooga.drbacchus.com' pattern='!^wooga\.drbacchus
\.com' [NC] => not-matched

RewriteCond %{HTTP_HOST} \
 !^wooga\.drbacchus\.com [NC]

Another example

Was a result of

142

(3) applying pattern '^/book/(mod)?_?rewrite'
to uri '/index.php'

RewriteRule ^/book/(mod)?_?rewrite \
 http://www.amazon.com/exec/obidos/asin/

1590595610/drbacchus/ [R,L]

Again ...

What was requested

143

(3) applying pattern '^/book/(mod)?_?rewrite'
to uri '/index.php'

RewriteRule ^/book/(mod)?_?rewrite \
 http://www.amazon.com/exec/obidos/asin/

1590595610/drbacchus/ [R,L]

And ...

What it was compared against

144

(3) applying pattern '^/book/(mod)?_?rewrite'
to uri '/index.php'

RewriteRule ^/book/(mod)?_?rewrite \
 http://www.amazon.com/exec/obidos/asin/

1590595610/drbacchus/ [R,L]

Matched?

If it matched, the next line will be the
action log

145

(3) applying pattern '^/book/(mod)?_?rewrite'
to uri '/index.php'

RewriteRule ^/book/(mod)?_?rewrite \
 http://www.amazon.com/exec/obidos/asin/

1590595610/drbacchus/ [R,L]

The whole thing

146

(3) applying pattern '^/books?/(mod)?_?rewrite' to uri '/books/
rewrite'
(2) rewrite '/books/rewrite' -> 'http://www.amazon.com/exec/
obidos/asin/1590595610/drbacchus/'
(2) explicitly forcing redirect with http://www.amazon.com/
exec/obidos/asin/1590595610/drbacchus/
(1) escaping http://www.amazon.com/exec/obidos/asin/
1590595610/drbacchus/ for redirect
(1) redirect to http://www.amazon.com/exec/obidos/asin/
1590595610/drbacchus/ [REDIRECT/302]

The match:

147

(3) applying pattern '^/books?/(mod)?_?rewrite' to uri '/books/
rewrite'
(2) rewrite '/books/rewrite' -> 'http://www.amazon.com/exec/
obidos/asin/1590595610/drbacchus/'
(2) explicitly forcing redirect with http://www.amazon.com/
exec/obidos/asin/1590595610/drbacchus/
(1) escaping http://www.amazon.com/exec/obidos/asin/
1590595610/drbacchus/ for redirect
(1) redirect to http://www.amazon.com/exec/obidos/asin/
1590595610/drbacchus/ [REDIRECT/302]

Followed by

148

(3) applying pattern '^/books?/(mod)?_?rewrite' to uri '/books/
rewrite'
(2) rewrite '/books/rewrite' -> 'http://www.amazon.com/exec/
obidos/asin/1590595610/drbacchus/'
(2) explicitly forcing redirect with http://www.amazon.com/
exec/obidos/asin/1590595610/drbacchus/
(1) escaping http://www.amazon.com/exec/obidos/asin/
1590595610/drbacchus/ for redirect
(1) redirect to http://www.amazon.com/exec/obidos/asin/
1590595610/drbacchus/ [REDIRECT/302]

[R]

149

(3) applying pattern '^/books?/(mod)?_?rewrite' to uri '/books/
rewrite'
(2) rewrite '/books/rewrite' -> 'http://www.amazon.com/exec/
obidos/asin/1590595610/drbacchus/'
(2) explicitly forcing redirect with http://www.amazon.com/
exec/obidos/asin/1590595610/drbacchus/
(1) escaping http://www.amazon.com/exec/obidos/asin/
1590595610/drbacchus/ for redirect
(1) redirect to http://www.amazon.com/exec/obidos/asin/
1590595610/drbacchus/ [REDIRECT/302]

But it all runs together!
Look for:

‘init rewrite engine’ shows where a new
request started being rewritten

150

(2) init rewrite engine with requested uri /atom/1

.htaccess

Can’t use RewriteLog in a .htaccess file

Test it on your dev server before moving to
live server

151

TRACE

152

 RewriteEngine on
 RewriteCond %{REQUEST_METHOD} ^(TRACE|TRACK)
 RewriteRule ^ - [F]

Security scanners

Report this as a vulnerability

It isn’t

But it doesn’t hurt to shut them up

153

Related modules

mod_substitute

mod_ext_filter

mod_proxy_html

mod_line_edit

154

How do I do that ...

Questions like “How do I do XYZ with
mod_rewrite” often have the same answer

YOU DON’T

These modules are sometimes the right
answer

155

mod_substitute

New in 2.2.8

In-stream regex

Replace a string, or a pattern, in the output

Chain with other filters

156

mod_substitute
One directive: Substitute

157

<Location />

 AddOutputFilterByType SUBSTITUTE text/html
 Substitute s/ariel/verdana/ni

</Location>

mod_substitute

n = treat as a fixed string

Default - treat as regex

158

<Location />

 AddOutputFilterByType SUBSTITUTE text/html
 Substitute s/ariel/verdana/ni

</Location>

mod_substitute

i - Case insensitive match

Default - Case sensitive

159

<Location />

 AddOutputFilterByType SUBSTITUTE text/html
 Substitute s/ariel/verdana/ni

</Location>

mod_substitute
Replace ariel with verdana everywhere

Filter content as it passes through. Perhaps
on a proxy server.

160

<Location />

 AddOutputFilterByType SUBSTITUTE text/html
 Substitute s/ariel/verdana/ni

</Location>

mod_ext_filter

Calls an external command to filter the
stream

Hugely inefficient

161

mod_proxy_html

Rewrites HTML at the proxy

Swap hostnames for absolute URLs

Third-party module

162

mod_line_edit

Very similar to mod_substitute

Third-party module

163

fin

rbowen@apache.org

http://drbacchus.com/

http://drbacchus.com/books/

http://people.apache.org/~rbowen

http://httpd.apache.org/docs/2.2/rewrite/

164

