/* * * $Id: reedsolomon.c 25240 2008-05-05 20:38:27Z etxrab $ * * Reed-Solomon coding and decoding * Phil Karn (karn@ka9q.ampr.org) September 1996 * Separate CCSDS version create Dec 1998, merged into this version May 1999 * * This file is derived from my generic RS encoder/decoder, which is * in turn based on the program "new_rs_erasures.c" by Robert * Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari Thirumoorthy * (harit@spectra.eng.hawaii.edu), Aug 1995 * Copyright 1999 Phil Karn, KA9Q * May be used under the terms of the GNU public license */ #include #include "reedsolomon.h" #ifdef CCSDS /* CCSDS field generator polynomial: 1+x+x^2+x^7+x^8 */ int Pp[MM+1] = { 1, 1, 1, 0, 0, 0, 0, 1, 1 }; #else /* not CCSDS */ /* MM, KK, B0, PRIM are user-defined in rs.h */ /* Primitive polynomials - see Lin & Costello, Appendix A, * and Lee & Messerschmitt, p. 453. */ #if(MM == 2)/* Admittedly silly */ int Pp[MM+1] = { 1, 1, 1 }; #elif(MM == 3) /* 1 + x + x^3 */ int Pp[MM+1] = { 1, 1, 0, 1 }; #elif(MM == 4) /* 1 + x + x^4 */ int Pp[MM+1] = { 1, 1, 0, 0, 1 }; #elif(MM == 5) /* 1 + x^2 + x^5 */ int Pp[MM+1] = { 1, 0, 1, 0, 0, 1 }; #elif(MM == 6) /* 1 + x + x^6 */ int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1 }; #elif(MM == 7) /* 1 + x^3 + x^7 */ int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 1 }; #elif(MM == 8) /* 1+x^2+x^3+x^4+x^8 */ int Pp[MM+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 }; #elif(MM == 9) /* 1+x^4+x^9 */ int Pp[MM+1] = { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; #elif(MM == 10) /* 1+x^3+x^10 */ int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; #elif(MM == 11) /* 1+x^2+x^11 */ int Pp[MM+1] = { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; #elif(MM == 12) /* 1+x+x^4+x^6+x^12 */ int Pp[MM+1] = { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 }; #elif(MM == 13) /* 1+x+x^3+x^4+x^13 */ int Pp[MM+1] = { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; #elif(MM == 14) /* 1+x+x^6+x^10+x^14 */ int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }; #elif(MM == 15) /* 1+x+x^15 */ int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; #elif(MM == 16) /* 1+x+x^3+x^12+x^16 */ int Pp[MM+1] = { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 }; #else #error "Either CCSDS must be defined, or MM must be set in range 2-16" #endif #endif #ifdef STANDARD_ORDER /* first byte transmitted is index of x**(KK-1) in message poly*/ /* definitions used in the encode routine*/ #define MESSAGE(i) data[KK-(i)-1] #define REMAINDER(i) bb[NN-KK-(i)-1] /* definitions used in the decode routine*/ #define RECEIVED(i) data[NN-1-(i)] #define ERAS_INDEX(i) (NN-1-eras_pos[i]) #define INDEX_TO_POS(i) (NN-1-(i)) #else /* first byte transmitted is index of x**0 in message polynomial*/ /* definitions used in the encode routine*/ #define MESSAGE(i) data[i] #define REMAINDER(i) bb[i] /* definitions used in the decode routine*/ #define RECEIVED(i) data[i] #define ERAS_INDEX(i) eras_pos[i] #define INDEX_TO_POS(i) i #endif /* This defines the type used to store an element of the Galois Field * used by the code. Make sure this is something larger than a char if * if anything larger than GF(256) is used. * * Note: unsigned char will work up to GF(256) but int seems to run * faster on the Pentium. */ typedef int gf; /* index->polynomial form conversion table */ static gf Alpha_to[NN + 1]; /* Polynomial->index form conversion table */ static gf Index_of[NN + 1]; /* No legal value in index form represents zero, so * we need a special value for this purpose */ #define A0 (NN) /* Generator polynomial g(x) in index form */ static gf Gg[NN - KK + 1]; static int RS_init; /* Initialization flag */ /* Compute x % NN, where NN is 2**MM - 1, * without a slow divide */ /* static inline gf*/ static gf modnn(int x) { while (x >= NN) { x -= NN; x = (x >> MM) + (x & NN); } return x; } #define min_(a,b) ((a) < (b) ? (a) : (b)) #define CLEAR(a,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = 0;\ } #define COPY(a,b,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } #define COPYDOWN(a,b,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } static void init_rs(void); #ifdef CCSDS /* Conversion lookup tables from conventional alpha to Berlekamp's * dual-basis representation. Used in the CCSDS version only. * taltab[] -- convert conventional to dual basis * tal1tab[] -- convert dual basis to conventional * Note: the actual RS encoder/decoder works with the conventional basis. * So data is converted from dual to conventional basis before either * encoding or decoding and then converted back. */ static unsigned char taltab[NN+1],tal1tab[NN+1]; static unsigned char tal[] = { 0x8d, 0xef, 0xec, 0x86, 0xfa, 0x99, 0xaf, 0x7b }; /* Generate conversion lookup tables between conventional alpha representation * (@**7, @**6, ...@**0) * and Berlekamp's dual basis representation * (l0, l1, ...l7) */ static void gen_ltab(void) { int i,j,k; for(i=0;i<256;i++){/* For each value of input */ taltab[i] = 0; for(j=0;j<8;j++) /* for each column of matrix */ for(k=0;k<8;k++){ /* for each row of matrix */ if(i & (1<polynomial form alpha_to[] contains j=alpha**i; polynomial form -> index form index_of[j=alpha**i] = i alpha=2 is the primitive element of GF(2**m) HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: Let @ represent the primitive element commonly called "alpha" that is the root of the primitive polynomial p(x). Then in GF(2^m), for any 0 <= i <= 2^m-2, @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for example the polynomial representation of @^5 would be given by the binary representation of the integer "alpha_to[5]". Similarily, index_of[] can be used as follows: As above, let @ represent the primitive element of GF(2^m) that is the root of the primitive polynomial p(x). In order to find the power of @ (alpha) that has the polynomial representation a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) we consider the integer "i" whose binary representation with a(0) being LSB and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry "index_of[i]". Now, @^index_of[i] is that element whose polynomial representation is (a(0),a(1),a(2),...,a(m-1)). NOTE: The element alpha_to[2^m-1] = 0 always signifying that the representation of "@^infinity" = 0 is (0,0,0,...,0). Similarily, the element index_of[0] = A0 always signifying that the power of alpha which has the polynomial representation (0,0,...,0) is "infinity". */ static void generate_gf(void) { register int i, mask; mask = 1; Alpha_to[MM] = 0; for (i = 0; i < MM; i++) { Alpha_to[i] = mask; Index_of[Alpha_to[i]] = i; /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ if (Pp[i] != 0) Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ mask <<= 1; /* single left-shift */ } Index_of[Alpha_to[MM]] = MM; /* * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by * poly-repr of @^i shifted left one-bit and accounting for any @^MM * term that may occur when poly-repr of @^i is shifted. */ mask >>= 1; for (i = MM + 1; i < NN; i++) { if (Alpha_to[i - 1] >= mask) Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); else Alpha_to[i] = Alpha_to[i - 1] << 1; Index_of[Alpha_to[i]] = i; } Index_of[0] = A0; Alpha_to[NN] = 0; } /* * Obtain the generator polynomial of the TT-error correcting, length * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0, * ... ,(2*TT-1) * * Examples: * * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2. * g(x) = (x+@) (x+@**2) * * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4. * g(x) = (x+1) (x+@) (x+@**2) (x+@**3) */ static void gen_poly(void) { register int i, j; Gg[0] = 1; for (i = 0; i < NN - KK; i++) { Gg[i+1] = 1; /* * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by * (@**(B0+i)*PRIM + x) */ for (j = i; j > 0; j--) if (Gg[j] != 0) Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + (B0 + i) *PRIM)]; else Gg[j] = Gg[j - 1]; /* Gg[0] can never be zero */ Gg[0] = Alpha_to[modnn(Index_of[Gg[0]] + (B0 + i) * PRIM)]; } /* convert Gg[] to index form for quicker encoding */ for (i = 0; i <= NN - KK; i++) Gg[i] = Index_of[Gg[i]]; } /* * take the string of symbols in data[i], i=0..(k-1) and encode * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[] * is input and bb[] is output in polynomial form. Encoding is done by using * a feedback shift register with appropriate connections specified by the * elements of Gg[], which was generated above. Codeword is c(X) = * data(X)*X**(NN-KK)+ b(X) */ int encode_rs(dtype data[KK], dtype bb[NN-KK]) { register int i, j; gf feedback; #if DEBUG >= 1 && MM != 8 /* Check for illegal input values */ for(i=0;i NN) return -1; #endif if(!RS_init) init_rs(); CLEAR(bb,NN-KK); #ifdef CCSDS /* Convert to conventional basis */ for(i=0;i= 0; i--) { feedback = Index_of[MESSAGE(i) ^ REMAINDER(NN - KK - 1)]; if (feedback != A0) { /* feedback term is non-zero */ for (j = NN - KK - 1; j > 0; j--) if (Gg[j] != A0) REMAINDER(j) = REMAINDER(j - 1) ^ Alpha_to[modnn(Gg[j] + feedback)]; else REMAINDER(j) = REMAINDER(j - 1); REMAINDER(0) = Alpha_to[modnn(Gg[0] + feedback)]; } else { /* feedback term is zero. encoder becomes a * single-byte shifter */ for (j = NN - KK - 1; j > 0; j--) REMAINDER(j) = REMAINDER(j - 1); REMAINDER(0) = 0; } } #ifdef CCSDS /* Convert to l-basis */ for(i=0;i= 1 && MM != 8 /* Check for illegal input values */ for(i=0;i NN) return -1; #endif /* form the syndromes; i.e., evaluate data(x) at roots of g(x) * namely @**(B0+i)*PRIM, i = 0, ... ,(NN-KK-1) */ for(i=1;i<=NN-KK;i++){ s[i] = RECEIVED(0); } for(j=1;j 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = Alpha_to[modnn(PRIM * ERAS_INDEX(0))]; for (i = 1; i < no_eras; i++) { u = modnn(PRIM*ERAS_INDEX(i)); for (j = i+1; j > 0; j--) { tmp = Index_of[lambda[j - 1]]; if(tmp != A0) lambda[j] ^= Alpha_to[modnn(u + tmp)]; } } #if DEBUG >= 1 /* Test code that verifies the erasure locator polynomial just constructed Needed only for decoder debugging. */ /* find roots of the erasure location polynomial */ for(i=1;i<=no_eras;i++) reg[i] = Index_of[lambda[i]]; count = 0; for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { q = 1; for (j = 1; j <= no_eras; j++) if (reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } if (q != 0) continue; /* store root and error location number indices */ root[count] = i; loc[count] = k; count++; } if (count != no_eras) { printf("\n lambda(x) is WRONG\n"); count = -1; goto finish; } #if DEBUG >= 2 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); for (i = 0; i < count; i++) printf("%d ", loc[i]); printf("\n"); #endif #endif } for(i=0;i 0; j--){ if (reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } } if (q != 0) continue; /* store root (index-form) and error location number */ root[count] = i; loc[count] = k; /* If we've already found max possible roots, * abort the search to save time */ if(++count == deg_lambda) break; } if (deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ count = -1; goto finish; } /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**(NN-KK)). in index form. Also find deg(omega). */ deg_omega = 0; for (i = 0; i < NN-KK;i++){ tmp = 0; j = (deg_lambda < i) ? deg_lambda : i; for(;j >= 0; j--){ if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; } if(tmp != 0) deg_omega = i; omega[i] = Index_of[tmp]; } omega[NN-KK] = A0; /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count-1; j >=0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != A0) num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; } num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for (i = min_(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { if(lambda[i+1] != A0) den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; } if (den == 0) { #if DEBUG >= 1 printf("\n ERROR: denominator = 0\n"); #endif /* Convert to dual- basis */ count = -1; goto finish; } /* Apply error to data */ if (num1 != 0) { RECEIVED(loc[j]) ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; } } finish: #ifdef CCSDS /* Convert to dual- basis */ for(i=0;i