Advanced Bash-Scripting Guide

An in—-depth exploration of the art of shell scripting

Mendel Cooper

<thegrendel@theriver.com>

5.0

24 June 2007

Revision History

Revision 4.2 10 Dec 2006 Revised by: mc
'SPARKLEBERRY" release: Important Update.

Revision 4.3 29 Apr 2007 Revised by: mc
INKBERRY" release: Minor Update.

Revision 5.0 24 Jun 2007 Revised by: mc

'SERVICEBERRY" release: Major Update.

This tutorial assumes no previous knowledge of scripting or programming, but progresses rapidly toward an
intermediate/advanced level of instruction . . . all the while sneaking in little snippets of UNIX® wisdom and
lore. It serves as a textbook, a manual for self—study, and a reference and source of knowledge on shell
scripting techniques. The exercises and heavily—commented examples invite active reader participation, under
the premise that the only way to really learn scripting is to write scripts.

This book is suitable for classroom use as a general introduction to programming concepts.
The latest update of this document, as an archived, bzip2—ed "tarball" including both the SGML source and

rendered HTML, may be downloaded from the author's home site. A pdf version is also available (_pdf mirror
site). See the change log for a revision history.

Dedication

For Anita, the source of all the magic

mailto:thegrendel@theriver.com
http://personal.riverusers.com/~thegrendel/abs-guide-5.0.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.pdf
http://personal.riverusers.com/~thegrendel/abs-guide.pdf
http://personal.riverusers.com/~thegrendel/abs-guide.pdf
http://personal.riverusers.com/~thegrendel/Change.log

Advanced Bash-Scripting Guide

Table of Contents

Chapter 1. Why Shell Programming? 1
hapter 2. Starting Off With a Sha—Ban 3
2.1. INVOKING he SCIIDE. . .uveeuteeuteeiteteete ettt ettt ettt ettt et e bt e bt e bt e bt e bt e sbe e s bt e bt e bt e bt e sbeesbeesbeenseanses 6

2.2, Preliminary EXEICISES. ... euueeueeteetieteetteite et et ettt et e e bt e bt e bt e bt e bt e bt e sbeesbeesbeesbe e bt e sbeesbeesbeenseannes 6

Part 2. Basics 7
Chapter 3. Special Characters 8
Chapter 4. Introduction to Variables and Parameters 26
4.1, Variable SUDSHEULION. ... eeeeeeeeeeeeeeteeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessesesessesesesesssessssssssesesssssnnnnes 26

4.2. Variable ASSIZIIMEIL.ueeueeuteeteeteeteeteete et et eteeteesteesbe e bt ebeeteeteebeenbeenbeenbeenteenseenbeenseenseansean 29

4.3. Bash Variables Are UNEYPEd.......oeoueiiiieiieiieieeieeie ettt ettt ettt be et ebe bt e b ebeeneean 30

4.4. Special Variable TVDES. .. .ccueeuieieiieete ettt ettt ettt ettt et b et e e bt e be e be e beebeebeeeean 31
Chapter 5. Quoting 36
5.1, QUOtING VATIADIES. .. e euee ettt ettt ettt ettt ettt e bt e bt e bt e e e be e teenbeebeenbeenbeeneean 36

5.2, ESCAPIIE - uteeutteutteute ettt ettt et ettt et e bt et et ea b e eate e bt ea bt e a bt e bt ente e be e bt ea bt et e e bt e beenbeenbeenbe e beenbean 38
Chapter 6. Exit and Exit Status, 43
Chapter 7. Tests 45
] T ST COMSIIUCES ..ot aaeaaeeeeeeeeeeeeeeeeaeeeeeeeeeaeeeaeesesesessesesesesessssssssasesasssnnnnnnes 45

7.2, FIle tEST OPEIALOLS ... veeuveeureeuteeuteeuteeteeuteeuteeuteeateeuteeateenteebeanbeenbeenseenteenbeenbeenbeenbeenbeenteenbeenbeenseenseensean 51

7.3. Other COmMPAriSON OPEIALOTS.veeuveeureeteeteeteeteeteerteenteeteeteesseeteesteeaseebeeseesseenseensesseenseenseensenn 54

7.4. Nested if/then CONAItION TESES. ...uuuuuuuueueeeeeeieeeeeeeeereeieeeteeeeeeeeeeeeeeeeeeeeeeeteeeeeeeerererereresessssssesesssssssnnnes 59

7.5. Testing Your Knowledge Of TESES.....ueuoueetieiieieeiieie ettt ettt ettt et e be b es 60
Chapter 8. Operations and Related Topics 61
oI R0 0] 721 () 4 SOOI U URUSUPP 61

8.2, NUMETICAL COMSLANLS ..eevvtiiereeieeeeeeeeeee ettt et ettt e e e e e e e et e e et e e e e eeeeseaeaaseaaasaaaasassssaesesesesereeeseeeeeeeeseeeseeseseses 67

Part 3. Bevond the Basics. 69
Chapter 9. Variables Revisited 70
0. 1. INEINAL VATIADIES ...evvveiieiiiiiieieeeeeeeeeeeeee ettt e et et e e e e e aaaaaaaassaaaaeasesananes 70

9.2. Manipulating STEIMES .. ceeveeuterieeieetieite ettt st te st e sht e st e satesatesbeesbeesheesutesaeesatesbtesbeesbeesaeenaeenaes 87

9.2.1. Manipulating Strings USING AWK.......cecuiriiiiiiieiie ettt sttt st 93

LR RN a1 015 DY o1 3oy 1o) 4 DO TR 94

0.3, Parameter SUDSHEULION ...vvvvvtiitieieieeeeeeeeee ettt ettt e et e e e e e e e e et e e e e e e e e eesesesassssssssssasasessssassssssssssssssesasanes 94

9.4. Typing variables: declare OF EYPESEL......cecueerteerteeieeieeiteeie et et ettt et e e st et ebeebeesbeesbeesbeebeeeeas 103

0.5, INAITECE RETEIEIICES. c.vvvvevieiiiieiiieieeeeeeee ettt et et et e e e e s aeaaaaaasaassaeaeasenes 105

9.6. SRANDOM: generate random INEEZEE.everververiereereererieeeeeseesessesseseseesessessenseseesessessessesseseesenns 108

9.7. The Double Parentheses CONSIIUCTccovviiiiiiiieeie et e e e e e e e aasaaaaasssaseaeeeesenes 117

Advanced Bash-Scripting Guide

Table of Contents

Chapter 10. L.oops and Branches

Chapter 11. Command Substitution

Chapter 12. Arithmetic Expansion

Chapter 13. Recess Time,
Part 4. Commands

Chapter 14. Internal Commands and Builtins
14.1. Job Control Commands.................e.....

Chapter 15. External Filters, Programs and Commands

15.1. Basic Commands.........cccuevvveveveeeeeeeennns

15.2. Complex Commands........ccceevveenueenen.
15.3. Time / Date Commands.................e.....

15.4. Text Processing Commands................

15.5. File and Archiving Commands.

15.6. Communications Commands..............
15.7. Terminal Control Commands..............
15.8. Math CommandS........cccevvveevveveeeeeeeennns

Chapter 16. System and Administrative Commands
16.1. Analyzing a System Script.......c..........

Part 5. Advanced Topics

120
120
132
133
136

144

150

151

152

160
187

191
191
196
206
209
229
246
260
261
270

283
311

313

Chapter 17. Regular Expressions.

315

17.1. A Brief Introduction to Regular Expressions
17.2. GIODDING. .. vevevieeieieieeieeie e

315
318

320

Chapter 18. Here Documents

18.1. Here Strings......cccceeveeneeneeneeneeneennens

Chapter 19. I/0 Redirection

330

333

19.3. APPLCAIONS. .ovveeuveeneeeieeieeieeiceieeneen

Chapter 20. Subshells

336
339
344

346

Advanced Bash-Scripting Guide

Table of Contents

Chapter 21. Restricted Shells 351
Chapter 22. Process Substitution 353
Chapter 23. Functions 356
23.1. Complex Functions and Function COMPIEXITIES eeuverveertierierienieniieniienieenieesieesieenieesieenieeneeas 358

23,2, T.0CAL VATTADIES. .. ettt e e e e e e e e et e e e e e e e e e e e e e e e e sasassaaaaassssasasasaaanes 369

23.2.1. Local variables help make recursion poSSibIe.ccceereerierienienienienieeneesee e 370

23.3. Recursion Without 1.ocal VariableS.cooovviviiiiiiiiiiiiieiiieeeee e aaeaeaeaeeees 371
Chapter 24. Aliases 373
Chapter 25. List Constructs. 376
Chapter 26. Arrays 379
Chapter 27. /dev and /proc 406
I T < 1= TR OROPORPRPRPPPRPPPPPRRt 406

272 JPLOC w e euteeeuite ettt ettt et ettt e ettt e et e bt e s hb e sa bt e e at e e e a b et e bt e e bt e e bt e e bt e e eabeesabe e e be e e bae e bt e enabeesabeesabeean 408

hapter 28. Of Zeros and Nulls 414
Chapter 29. Debugging 418
Chapter 30. Options 428
Chapter 31. Gotchas 430
Chapter 32. Scripting With Style 438
32.1. Unofficial Shell Scripting StYIEShEet.......ccuevieriiiiiiieiietete et 438
Chapter 33. Miscellany. 441
33.1. Interactive and non—interactive shells and SCTIPLS........cccuereerierienienierieneenee e siee e siee e 441

33.2. SHEIL WIAPDEIS . .veuteeuterutertieriteetteetteettesttesttesutestteeutesueesbeesbeesbeesbeeeaeeabee bt e bt abeesbeesbeenbeenbeabeensean 442

33.3. Tests and Comparisons: AIEIMALIVES.ccceerierierienienierttenttestee st esteesbeesbeesbeesbeesbeesseesbeenbeeneeas 446

332 RECUISION: . eeeteeeeeeeieeeaeeaeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeesesesessesesesesssessssssssssssnssssssssssssssssssssssasssssanes 447

33.5. "COlOTIZING" SCIIDES. . uveveereteruieetieeieette et te st testte st e st e st e e sbtesbtesbtesbeesbeesbeesbee bt esbeesbeenbeenbeenbeenbeeneean 449

33.6. ODUIMIZATIONS -+ vveeuteeuteettertteetteetteetteettesttesttesutesteeeutesuteabeesbtesbeesbeeebeeabeesbee bt anbeesbeenbeanbeebeabeensean 462

33.7. ASSOTEEA TIPS, .t ueeiteeiieeite ettt a e b e b e s bt e s bt e s bt e s bt e sbe e bt e bt e bt e sbeenbee bt ebeebeenbean 463

33.8. SECUIILY ISSUES. .. ueeuiiiieieiiitie ettt e sttt et e bt e s bt e s bt e sbe e s bt e bt e bt e bt e sbeesbeesbeebeebeabeeneean 473

33.8.1. Infected Shell SCIIDES. . ..ueiteeieeieeitertie ettt ettt e st e e st e e s bt e sbeesbe e beebeenbeas 473

33.8.2. Hiding Shell SCript SOUICEccuueiuterieriieiiieeiieeieei ettt ettt ettt et e bbb e b enbeas 473

33.8.3. Writing Secure Shell SCIIDES......ueitirterieiieiieeiieet ettt sttt ettt sbe e b e b e b enbeeneeas 474

33.9. POrtabilify ISSUES .. uueeueeiuiertiertieetie ettt ettt sttt et et e bt e s bt e sbeesbeesbeesbe e bt e s bt e bt e sbeesbee bt enbeebeeneeas 474

33.10. Shell Scripting Under WINAOWS.........oouirierienieiieniiesitestte sttt ettt siee st e see e b e sbe e b e sbeenbeeneeas 475

Advanced Bash-Scripting Guide

Table of Contents

Chapter 34. Bash, versions 2 and 3

34.1. BaASH, VEISIOM 2.uuueieniiiiiiiieieieieeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseresesesesessesesesneans
34.2. BaSh, VEISIOM 3..uuuieeeiiiiieiieeieieeseseseresesessesssesanans
34.2.1. Bash, VEISION 3.1 ceieeiieeieeeeeeet e e et e e e e e eeeeeeeesaeaeeeeas

Chapter 35. Endnotes

.............................. 482

351, AULNOI'S INOLE. ..vvveeeeeeeeieieeee ettt e e et e e e e s e aaa e e e e s e e ennaaaeeeeeeean
35.2. ADOUL the AULNOT. ... ceviiiiiee e e e e e e e
35.3. Where t0 GO FOr Help....oooovieiieiieiieieieeeeeeeeeeee e
35.4. Tools Used to Produce This BOOK........cccuvvviiiiiiiiiieeieeeeeeieeeeee e

35.4. 1. HATAWATE. ... e e e e s e aae e e e s s eennaes

35.4.2. Software and PriNtWaTE...........coovuvvvieeeeiiiieeeeeeeeeeieeeeeeeeeeeeree e e e eeenans
IS T T O3 (=16 11 1N
RSN B RT3 P14 1<) PO

.............................. 487

Bibliography.

Appendix A. Contributed Scripts

Appendix B. Reference Cards

Appendix C. A Sed and Awk Micro—Primer

Appendix D. Exit Codes With Special Meanings

Appendix E. A Detailed Introduction to I/0 and 1I/0O Redirection

Appendix F. Command-Line Options

Appendix G. Important Files

Appendix H. Important System Directories

Appendix I. Localization

Appendix J. History Commands

Appendix K. A Sample .bashrc File

Appendix L. Converting DOS Batch Files to Shell Scripts

Appendix M. Exercises.

484

.............................. 484
.............................. 484

488
495
642
647
647
650
653
654
656
656
657
659
660
662
666
667
679
683

683
684

Appendix N. Revision History.

A

Appendix P. To Do List

Appendix Q. Copyright.

endix O. Mirror Sites

Advanced Bash-Scripting Guide

Table of Contents

693

A

endix R. A

II Table

695

696

698

Chapter 1. Why Shell Programming?

No programming language is perfect. There is not
even a single best language; there are only languages
well suited or perhaps poorly suited for particular
purposes.

——Herbert Mayer
A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /et c/rc.d to restore the system configuration and
set up services. A detailed understanding of these startup scripts is important for analyzing the behavior of a
system, and possibly modifying it.

Writing shell scripts is not hard to learn, since the scripts can be built in bite—sized sections and there is only a
fairly small set of shell-specific operators and options [1] to learn. The syntax is simple and straightforward,
similar to that of invoking and chaining together utilities at the command line, and there are only a few "rules"
to learn. Most short scripts work right the first time, and debugging even the longer ones is straightforward.

A shell script is a "quick and dirty" method of prototyping a complex application. Getting even a limited
subset of the functionality to work in a shell script is often a useful first stage in project development. This
way, the structure of the application can be tested and played with, and the major pitfalls found before
proceeding to the final coding in C, C++, Java, or Perl.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high powered
all-in—one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you
to alter your thinking processes to fit the tool.

According to Herbert Mayer, "a useful language needs arrays, pointers, and a generic mechanism for building
data structures." By these criteria, shell scripting falls somewhat short of being "useful." Or, perhaps not.

When not to use shell scripts

® Resource—intensive tasks, especially where speed is a factor (sorting, hashing, etc.)

® Procedures involving heavy—duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

¢ Cross—platform portability required (use C or Java instead)

¢ Complex applications, where structured programming is a necessity (need type—checking of variables,
function prototypes, etc.)

® Mission—critical applications upon which you are betting the ranch, or the future of the company

e Situations where security is important, where you need to guarantee the integrity of your system and
protect against intrusion, cracking, and vandalism

® Project consists of subcomponents with interlocking dependencies

¢ Extensive file operations required (Bash is limited to serial file access, and that only in a particularly
clumsy and inefficient line—by—line fashion)

¢ Need native support for multi—dimensional arrays

e Need data structures, such as linked lists or trees

¢ Need to generate or manipulate graphics or GUIs

Chapter 1. Why Shell Programming? 1

Advanced Bash-Scripting Guide

® Need direct access to system hardware

¢ Need port or socket I/O

® Need to use libraries or interface with legacy code

® Proprietary, closed—source applications (shell scripts put the source code right out in the open for all
the world to see)

If any of the above applies, consider a more powerful scripting language —— perhaps Perl, Tcl, Python, Ruby
—— or possibly a high—level compiled language such as C, C++, or Java. Even then, prototyping the
application as a shell script might still be a useful development step.

We will be using Bash, an acronym for "Bourne—Again shell" and a pun on Stephen Bourne's now classic
Bourne shell. Bash has become a de facto standard for shell scripting on all flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, [2] and the C Shell and its variants. (Note that C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post by Tom
Christiansen.)

What follows is a tutorial on shell scripting. It relies heavily on examples to illustrate various features of the
shell. The example scripts work —— they've been tested, insofar as was possible — and some of them are even
useful in real life. The reader can play with the actual working code of the examples in the source archive
(scriptname.shor scriptname.bash), [3] give them execute permission (chmod u+rx
scriptname), then run them to see what happens. Should the source archive not be available, then
cut—and—paste from the HTML, pdf, or text rendered versions. Be aware that some of the scripts presented
here introduce features before they are explained, and this may require the reader to temporarily skip ahead
for enlightenment.

Unless otherwise noted, the author of this book wrote the example scripts that follow.

Chapter 1. Why Shell Programming? 2

http://www.etext.org/Quartz/computer/unix/csh.harmful.gz
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://www.tldp.org/LDP/abs/abs-guide.pdf
http://www.ibiblio.org/pub/Linux/docs/linux-doc-project/abs-guide/abs-guide.txt.gz
mailto:thegrendel@theriver.com

Chapter 2. Starting Off With a Sha-Bang

Shell programming is a 1950s juke box . . .

——Larry Wall
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2-1. cleanup: A script to clean up the log files in /var/log

Cleanup
Run as root, of course.

cd /var/log

cat /dev/null > messages
cat /dev/null > wtmp
echo "Logs cleaned up."

There is nothing unusual here, only a set of commands that could just as easily be invoked one by one from
the command line on the console or in an xterm. The advantages of placing the commands in a script go
beyond not having to retype them time and again. The script becomes a fool, and can easily be modified or
customized for a particular application.

Example 2-2. cleanup: An improved clean—up script

#!/bin/bash
Proper header for a Bash script.

Cleanup, version 2

Run as root, of course.
Insert code here to print error message and exit if not root.

LOG_DIR=/var/log

Variables are better than hard-coded values.
cd SLOG_DIR

cat /dev/null > messages

cat /dev/null > wtmp

echo "Logs cleaned up."

exit # The right and proper method of "exiting" from a script.

Now that's beginning to look like a real script. But we can go even farther . . .

Example 2-3. cleanup: An enhanced and generalized version of above scripts.

#!/bin/bash
Cleanup, version 3

Warning:

Chapter 2. Starting Off With a Sha-Bang 3

Advanced Bash-Scripting Guide

This script uses quite a number of features that will be explained
#+ later on.

By the time you've finished the first half of the book,

#+ there should be nothing mysterious about it.

LOG_DIR=/var/log

ROOT_UID=0 # Only users with SUID 0 have root privileges.
LINES=50 # Default number of lines saved.
E_XCD=66 # Can't change directory?

E_NOTROOT=67 # Non-root exit error.

Run as root, of course.

if ["SUID" -ne "SROOT_UID"]

then
echo "Must be root to run this script."
exit S$SE_NOTROOT

fi

if [-n "S$1"]
Test if command line argument present (non-empty) .
then
lines=$1
else
1lines=SLINES # Default, if not specified on command line.
fi

Stephane Chazelas suggests the following,

#+ as a better way of checking command line arguments,

#+ but this is still a bit advanced for this stage of the tutorial.
#

E_WRONGARGS=65 # Non-numerical argument (bad arg format)

#

case "$1" in

") lines=50;;

[!10-9]) echo "Usage: “basename $0° file-to-cleanup"; exit S$E_WRONGARGS; ;
&) lines=$1;;

esac

#

#* Skip ahead to "Loops" chapter to decipher all this.

cd $LOG_DIR

if ["pwd® != "SLOG_DIR"] # or if ["SPWD" != "SLOG_DIR"]
Not in /var/log?
then
echo "Can't change to $LOG_DIR."
exit S$E_XCD
fi # Doublecheck if in right directory, before messing with log file.

far more efficient is:
cd /var/log || {

echo "Cannot change to necessary directory." >&2
exit S$E_XCD;

4 o o 3 o3 o

Chapter 2. Starting Off With a Sha-Bang

Advanced Bash-Scripting Guide

tail -n $lines messages > mesg.temp # Saves last section of message log file.
mv mesg.temp messages # Becomes new log directory.

cat /dev/null > messages
#* No longer needed, as the above method is safer.

cat /dev/null > wtmp # ': > wtmp' and '> wtmp' have the same effect.
echo "Logs cleaned up."

exit O
A zero return value from the script upon exit
#+ indicates success to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section of
the message log intact. You will constantly discover ways of refining previously written scripts for increased
effectiveness.

The sha—bang (#!) at the head of a script tells your system that this file is a set of commands to be fed to the
command interpreter indicated. The #! is actually a two—byte [4] magic number, a special marker that
designates a file type, or in this case an executable shell script (type man magic for more details on this
fascinating topic). Immediately following the sha—bang is a path name. This is the path to the program that
interprets the commands in the script, whether it be a shell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (line following the
sha—bang line), ignoring comments. [5]

#!/bin/sh
#!/bin/bash
#!/usr/bin/perl
#!/usr/bin/tcl
#!/bin/sed —-f
#!/usr/awk —-f

Each of the above script header lines calls a different command interpreter, be it /bin/ sh, the default shell
(bash in a Linux system) or otherwise. [6] Using #! /bin/sh, the default Bourne shell in most commercial
variants of UNIX, makes the script portable to non—Linux machines, though you sacrifice Bash—specific
features. The script will, however, conform to the POSIX [7] sh standard.

Note that the path given at the "sha—bang" must be correct, otherwise an error message —— usually "Command
not found" —— will be the only result of running the script.

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. The second example, above, requires the initial #!, since the variable assignment line, 1ines=50,
uses a shell-specific construct. [8] Note again that #! /bin/sh invokes the default shell interpreter, which
defaults to /bin/bash on a Linux machine.

i) This tutorial encourages a modular approach to constructing a script. Make note of and collect
"boilerplate" code snippets that might be useful in future scripts. Eventually you can build quite an
extensive library of nifty routines. As an example, the following script prolog tests whether the script has
been invoked with the correct number of parameters.

E_WRONG_ARGS=65
script_parameters="-a -h —-m —-z"

Chapter 2. Starting Off With a Sha-Bang 5

Advanced Bash-Scripting Guide

-a = all, -h = help, etc.
if [$S# —-ne S$SNumber_ of_expected_args]
then

echo "Usage: "basename $0° S$script_parameters"

"basename $0° 1is the script's filename.

exit SE_WRONG_ARGS
fi
Many times, you will write a script that carries out one particular task. The first script in this chapter is
an example of this. Later, it might occur to you to generalize the script to do other, similar tasks.
Replacing the literal ("hard—wired") constants by variables is a step in that direction, as is replacing
repetitive code blocks by functions.

2.1. Invoking the script

Having written the script, you can invoke it by sh scriptname, [9] or alternatively bash scriptname.
(Not recommended is using sh <scriptname, since this effectively disables reading from stdin within
the script.) Much more convenient is to make the script itself directly executable with a chmod.

Either:
chmod 555 scriptname (gives everyone read/execute permission) [10]

or
chmod +rx scriptname (gives everyone read/execute permission)

chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by . /scriptname. [11] If it begins with a
"sha—bang" line, invoking the script calls the correct command interpreter to run it.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as root,
of course), to make the script available to yourself and all other users as a systemwide executable. The script
could then be invoked by simply typing scriptname [ENTER] from the command line.

2.2. Preliminary Exercises

1. System administrators often write scripts to automate common tasks. Give several instances where
such scripts would be useful.

2. Write a script that upon invocation shows the time and date, lists all logged—in users, and gives the
system uptime. The script then saves this information to a logfile.

Chapter 2. Starting Off With a Sha-Bang 6

Part 2. Basics

Table of Contents

3. Special Characters

4. Introduction to Variables and Parameters
4.1. Variable Substitution

4.2. Variable Assignment
4.3. Bash Variables Are Untyped
4.4. Special Variable Types
5. Quoting
5.1. Quoting Variables

5.2. Escaping
6. Exit and Exit Status
7. Tests

7.1. Test Constructs

7.2. File test operators

7.3. Other Comparison Operators

7.4. Nested if/then Condition Tests

7.5. Testing Your Knowledge of Tests
8. Operations and Related Topics

8.1. Operators
8.2. Numerical Constants

Part 2. Basics

Chapter 3. Special Characters

Special Characters Found In Scripts and Elsewhere

#

Comments. Lines beginning with a # (with the exception of #!) are comments and will not be
executed.

This line is a comment.

Comments may also occur following the end of a command.

echo "A comment will follow." # Comment here.
~ Note whitespace before

Comments may also follow whitespace at the beginning of a line.

A tab precedes this comment.

<1> A command may not follow a comment on the same line. There is no method of

terminating the comment, in order for "live code" to begin on the same line. Use a new
line for the next command.

F Of course, an gscaped # in an echo statement does not begin a comment.

Likewise, a # appears in certain parameter substitution constructs and in
numerical constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

echo S${PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

Thanks, S.C.

The standard guoting and escape characters (" '\) escape the #.
Certain pattern matching operations also use the #.

Command separator [semicolon]. Permits putting two or more commands on the same line.

echo hello; echo there

if [-x "S$filename"]; then # Note that "if" and "then" need separation.
Why?
echo "File $filename exists."; cp $filename $filename.bak
else

echo "File $filename not found."; touch $filename
fi; echo "File test complete."

Note that the ";" sometimes needs to be escaped.

Terminator in a case option [double semicolon].

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

case "Svariable" in

abc) echo "\S$variable = abc" ;;
xyz) echo "\$variable = xyz" ;;
esac

"dot" command [period]. Equivalent to source (see Example 14—22). This is a bash builtin.

""dot"', as a component of a filename. When working with filenames, a dot is the prefix of a
"hidden" file, a file that an Is will not normally show.

bash$ touch .hidden-file
bash$ 1s -1

total 10

—rW—r——r—— 1 bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo 4602 May 25 13:58 datal.addressbook.bak
—rwW—r——r—— 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ 1s -al

total 14
ArwXrwxr—x 2 bozo Dbozo 1024 Aug 29 20:54 ./
drwx—————— 52 bozo Dbozo 3072 Aug 29 20:51 ../
—rW—r——r—— 1 bozo bozo 4034 Jul 18 22:04 datal.addressbook
—IrwW—r——r—— 1 bozo bozo 4602 May 25 13:58 datal.addressbook.bak
—IrwW—r——r—— 1 bozo bozo 877 Dec 17 2000 employment.addressbook
—IW—YrW-—Ir—— 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working directory, and two dots
denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ ed .
bash$ pwd
/home/bozo/projects

bash$ ed ..
bash$ pwd
/home /bozo/

The dot often appears as the destination (directory) of a file movement command.

bash$ cp /home/bozo/current_work/Jjunk/*

"dot" character match. When matching characters, as part of a regular expression, a "dot" matches a
single character.

partial quoting [double quote]. "STRING" preserves (from interpretation) most of the special
characters within STRING. See also Chapter 5.

full quoting [single quote]. 'STRING' preserves all special characters within STRING. This is a
stronger form of quoting than using ". See also Chapter 5.

Chapter 3. Special Characters 9

Advanced Bash-Scripting Guide

comma operator. The comma operator links together a series of arithmetic operations. All are
evaluated, but only the last one is returned.

let "t2 = ((a =9, 15 / 3))" # Set "a = 9" and "t2 = 15 / 3"
escape [backslash]. A quoting mechanism for single characters.

\X "escapes" the character X. This has the effect of "quoting" X, equivalent to 'X". The \ may be used
to quote " and ', so they are expressed literally.

See Chapter 5 for an in—depth explanation of escaped characters.

Filename path separator [forward slash]. Separates the components of a filename (as in
/home/bozo/projects/Makefile).

This is also the division arithmetic operator.
command substitution. The “‘command” construct makes available the output of command for

assignment to a variable. This is also known as backquotes or backticks.

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do—nothing operation). It
may be considered a synonym for the shell builtin true. The ":" command is itself a Bash builtin, and
its exit status is "true" (0).

écho S? # 0
Endless loop:

while :

do
operation-1
operation-2

operation—n
done

Same as:

while true

do

..

done

Placeholder in if/then test:

if condition

then : # Do nothing and branch ahead
else

take-some-action
fi

Provide a placeholder where a binary operation is expected, see Example 8—2 and default parameters.

${username="whoami }
S{username='whoami’ } Gives an error without the leading :

Chapter 3. Special Characters 10

Advanced Bash-Scripting Guide

unless "username" is a command or builtin...

Provide a placeholder where a command is expected in a here document. See Example 18—10.
Evaluate string of variables using parameter substitution (as in Example 9-15).

S{HOSTNAME?} ${USER?} S${MAIL?}
Prints error message
#+ 1f one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length, without changing its
permissions. If the file did not previously exist, creates it.

> data.xxx # File "data.xxx" now empty.
Same effect as cat /dev/null >data.xxx
However, this does not fork a new process, since ":" is a builtin.

See also Example 15-14.

In combination with the >> redirection operator, has no effect on a pre—existing target file (: >>
target_file). If the file did not previously exist, creates it.

E This applies to regular files, not pipes, symlinks, and certain special files.

May be used to begin a comment line, although this is not recommended. Using # for a comment
turns off error checking for the remainder of that line, so almost anything may appear in a comment.
However, this is not the case with :.

This is a comment that generates an error, (if [$x -eqg 3]).

The ":" also serves as a field separator, in /et c/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

reverse (or negate) the sense of a test or exit status [bang]. The ! operator inverts the exit status of
the command to which it is applied (see Example 6-2). It also inverts the meaning of a test operator.
This can, for example, change the sense of "equal" (=) to "not—equal"” (!=). The ! operator is a Bash

keyword.

In a different context, the ! also appears in indirect variable references.

In yet another context, from the command line, the ! invokes the Bash history mechanism (see
Appendix J). Note that within a script, the history mechanism is disabled.

wild card [asterisk]. The * character serves as a "wild card" for filename expansion in globbing. By
itself, it matches every filename in a given directory.

bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

The * also represents any number (or zero) characters in a regular expression.

Chapter 3. Special Characters 11

$
${}

$* $@

$?

$$
0

Advanced Bash-Scripting Guide

arithmetic operator. In the context of arithmetic operations, the * denotes multiplication.
A double asterisk, **, is the exponentiation operator.

test operator. Within certain expressions, the ? indicates a test for a condition.

In a double parentheses construct, the ? can serve as an element of a C—style trinary operator, ? :.

((var0 = varl<9829:21))

AN

if ["Svarl" -1t 98]
then

var0=9

else

var0=21

fi

In a parameter substitution expression, the ? tests whether a variable has been set.

wild card. The ? character serves as a single—character "wild card" for filename expansion in
globbing, as well as representing one character in an extended regular expression.

Yariable substitution (contents of a variable).

varl=5
var2=23skidoo

echo S$varl # 5
echo $var2 # 23skidoo

A $ prefixing a variable name indicates the value the variable holds.
end—of-line. In a regular expression, a "$" addresses the end of a line of text.
Parameter substitution.

positional parameters.

exit status variable. The $? variable holds the exit status of a command, a function, or of the script
itself.

process ID variable. The $$ variable holds the process ID [12] of the script in which it appears.
command group.
(a=hello; echo $a)
_1__ A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the rest
of the script. The parent process, the script, cannot read variables created in

Chapter 3. Special Characters

12

Advanced Bash-Scripting Guide

the child process, the subshell.

a=123
(a=321;)

echo "a = $a" # a = 123
"a" within parentheses acts like a local variable.

array initialization.

Array=(elementl element2 element3)

{xxx,yyy,zzz,...}
Brace expansion.

cat {filel,file2,file3} > combined_file
Concatenates the files filel, file2, and file3 into combined_file.

cp file22. {txt,backup}
Copies "file22.txt" to "file22.backup"

A command may act upon a comma—separated list of file specs within braces. [13] Filename
expansion (globbing) applies to the file specs between the braces.

<1 No spaces allowed within the braces unless the spaces are quoted or escaped.
echo {filel, file2}\ :{\ A," B",' C'}

filel : A filel : B filel : C file2 : A file2 : B file2
C

{a..z}
Extended Brace expansion.

echo {a..z} # abcdefghijklmnopgrstuvwzxyz
Echoes characters between a and z.

echo {0..3} # 0 1 2 3
Echoes characters between 0 and 3.

The {a..z} extended brace expansion construction is a feature introduced in version 3 of Bash.

{}
Block of code [curly brackets]. Also referred to as an inline group, this construct, in effect, creates
an anonymous function (a function without a name). However, unlike in a "standard" function, the
variables inside a code block remain visible to the remainder of the script.

bash$ { local a;

a=123; }
bash: local: can only be used in a
function

a=123
{ a=321; }
echo "a = $Sa" # a = 321 (value inside code block)

Thanks, S.C.

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and 1I/O redirection

#!/bin/bash
Reading lines in /etc/fstab.

File=/etc/fstab

{

read linel
read line2
} < $File

echo "First line in $File is:"
echo "$linel"

echo

echo "Second line in $File is:"
echo "$1line2"

exit O
Now, how do you parse the separate fields of each line?

Hint: use awk, or
. . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

#!/bin/bash
rpm-check.sh

Queries an rpm file for description, listing,
+ and whether it can be installed.
Saves output to a file.

4 o o3 o

This script illustrates using a code block.

SUCCESS=0
E_NOARGS=65

if [-z "s$1"]

then
echo "Usage: “basename $0° rpm-file"
exit SE_NOARGS

fi

{ # Begin code block.

echo

echo "Archive Description:"

rpm —gpi $1 # Query description.

echo

echo "Archive Listing:"

rpm —-gpl $1 # Query listing.

echo

rpm —-i —-test $1 # Query whether rpm file can be installed.
if ["$?" -eq S$SUCCESS]

then

echo "$1 can be installed."

Chapter 3. Special Characters

14

{}

{r\

[]

(L 11

[]

[]

(@)

Advanced Bash-Scripting Guide

else
echo "$1 cannot be installed."
fi
echo # End code block.
} > "Sl.test" # Redirects output of everything in block to file.

echo "Results of rpm test in file $1l.test"
See rpm man page for explanation of options.

exit O

=& Unlike a command group within (parentheses), as above, a code block enclosed by
{braces} will not normally launch a subshell. [14]

placeholder for text. Used after xargs —i (replace strings option). The {} double curly brackets are a
placeholder for output text.

ls . | xargs —-i -t cp ./{} $1
AN AN

From "ex42.sh" (copydir.sh) example.
pathname. Mostly used in find constructs. This is not a shell builtin.

=) The ";" ends the —exec option of a find command sequence. It needs to be escaped to
protect it from interpretation by the shell.

test.

Test expression between []. Note that [is part of the shell builtin test (and a synonym for it), not a
link to the external command /usr/bin/test.

test.

Test expression between [[]]. This is a shell keyword.

See the discussion on the [[...]] construct.

array element.

In the context of an array, brackets set off the numbering of each element of that array.

Array[l]=slot_1
echo ${Array[1l]}

range of characters.
As part of a regular expression, brackets delineate a range of characters to match.
integer expansion.

Expand and evaluate integer expression between (()).

Chapter 3. Special Characters 15

Advanced Bash-Scripting Guide
See the discussion on the ((_...)) construct.

>&>>&>><<>

<<
<

<, >

\<, \>

redirection.

scriptname >filename redirects the output of scriptname to file filename. Overwrite
filename if it already exists.

command &>filename redirects both the st dout and the stderr of command to £ilename.

command >&2 redirects stdout of command to stderr.

scriptname >>filename appends the output of scriptname to file filename. If
filename does not already exist, it is created.

[i]<>filename opens file £ilename for reading and writing, and assigns file descriptor i to it. If
filename does not exist, it is created.

process substitution.

(command) >
< (command)
In a different context, the "<" and ">" characters act as string comparison operators.

In yet another context, the "<" and ">" characters act as integer comparison operators. See also
Example 15-9.

redirection used in a here document.

redirection used in a here string.

ASCII comparison.

vegl=carrots
veg2=tomatoes

if [["$Svegl" < "Sveg2"]]
then
echo "Although $vegl precede $veg2 in the dictionary,"
echo —n "this does not necessarily imply anything "
echo "about my culinary preferences."
else
echo "What kind of dictionary are you using, anyhow?"
fi

word boundary in a regular expression.

bash$ grep '\<the\>' textfile

Chapter 3. Special Characters 16

>|

Advanced Bash-Scripting Guide

pipe. Passes the output (stdout of a previous command to the input (st din) of the next one, or to
the shell. This is a method of chaining commands together.

echo 1ls -1 | sh
Passes the output of "echo 1ls -1" to the shell,
#+ with the same result as a simple "l1ls -1".

cat *.lst | sort | unig
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the st dout of one process to the
stdin of another. In a typical case, a command, such as cat or echo, pipes a stream of data to a
"filter" (a command that transforms its input) for processing.

cat $filenamel $filename2 | grep $search_word

For an interesting note on the complexity of using UNIX pipes, see the UNIX FAQ. Part 3.
The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

tr 'a-z' 'A-Z'
Letter ranges must be quoted
#+ to prevent filename generation from single-letter filenames.

exit O

Now, let us pipe the output of Is —1 to this script.

bash$ 1s -1 | ./uppercase.sh

—RW-RW-R—— 1 BOZO BOZO 109 APR 7 19:49 1.TXT
—RW-RW-R—— 1 BOZO BOZO 109 APR 14 16:48 2.TXT
~RW-R——R—— 1 BOZO BOZO 725 APR 20 20:56 DATA-FILE

) The stdout of each process in a pipe must be read as the st din of the next. If this
is not the case, the data stream will block, and the pipe will not behave as expected.

cat filel file2 | 1ls -1 | sort
The output from "cat filel file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

variable="initial_ value"
echo "new_value" | read variable
echo "variable = Svariable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates execution of the
pipe. Called a broken pipe, this condition sends a SIGPIPE signal.

force redirection (even if the noclobber option is set). This will forcibly overwrite an existing file.

Chapter 3. Special Characters 17

http://www.faqs.org/faqs/unix-faq/faq/part3/

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

OR logical operator. In a test construct, the Il operator causes a return of O (success) if either of the
linked test conditions is true.

Run job in background. A command followed by an & will run in the background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

#!/bin/bash
background-loop.sh

for i in 1 2 345 6 7 8 9 10 # First loop.
do
echo -n "$i "
done & # Run this loop in background.
Will sometimes execute after second loop.

echo # This 'echo' sometimes will not display.

for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.

do
echo -n "$i "
done
echo # This 'echo' sometimes will not display.
#

The expected output from the script:
12345678910
11 12 13 14 15 16 17 18 19 20

H =

Sometimes, though, you get:

11 12 13 14 15 16 17 18 19 20
123456789 10 bozo $

(The second 'echo' doesn't execute. Why?)

R

S

Occasionally also:
12345678910 11 12 13 14 15 16 17 18 19 20
(The first 'echo' doesn't execute. Why?)

S

Very rarely something like:
11 12 13 1 2 3 456 7 8 9 10 14 15 16 17 18 19 20
The foreground loop preempts the background one.

S

exit O
Nasimuddin Ansari suggests adding sleep 1
#+ after the echo -n "$i" in lines 6 and 14,

#+ for some real fun.

18

Advanced Bash-Scripting Guide

<1 A command run in the background within a script may cause the script to hang,
waiting for a keystroke. Fortunately, there is a remedy for this.
&&
AND logical operator. In a test construct, the && operator causes a return of 0 (success) only if both
the linked test conditions are true.

option, prefix. Option flag for a command or filter. Prefix for an operator.
COMMAND -[Optionl] [Option2][...]

ls -al

sort —-dfu $filename

if [$filel -ot $file2]
then

echo "File $filel is older than S$file2."
fi

if [vl$all -eq ll$bvl]

then
echo "$a is equal to $b."
fi
if ["S$c" -eqg 24 -a "$d" -eqg 47]
then
echo "$c equals 24 and $d equals 47."
fi

The double—dash —— prefixes long (verbatim) options to commands.

sort —--ignore-leading-blanks

Used with a Bash builtin, it means the end of options to that particular command.
It is also used in conjunction with set.

set —— $variable (asin Example 14-18)

redirection from/to stdin or stdout [dash].

(cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)
Move entire file tree from one directory to another
[courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]

1) cd /source/directory

Source directory, where the files to be moved are.

2) &&

"And-list": if the 'cd' operation successful,

then execute the next command.

3) tar cf -

The 'c' option 'tar' archiving command creates a new archive,

the '"f' (file) option, followed by '-' designates the target file

Chapter 3. Special Characters 19

Advanced Bash-Scripting Guide

bunzip2 -c¢ linux-2.6.1l6.tar.bz2 | tar xvf -

—-uncompress tar file—- | ——then pass it to "tar"-—-

If "tar" has not been patched to handle "bunzip2",

#+ this needs to be done in two discrete steps, using a pipe.

The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "—" is not itself a Bash operator, but rather an option recognized by

certain UNIX utilities that write to st dout, such as tar, cat, etc.

as stdout, and do it in current directory tree ('.'").
#*4) |

Piped to

#5) (...)

a subshell

6) cd /dest/directory

Change to the destination directory.

7) &&

"And-1list", as above

8) tar xpvf -

Unarchive ('x'), preserve ownership and file permissions
and send verbose messages to stdout ('v'),

reading data from stdin ('f' followed by '-'").

#

Note that 'x' is a command, and 'p', 'v', 'f' are options.
#

Whew!

More elegant than, but equivalent to:

cd source/directory

tar cf - . | (cd ../dest/directory; tar xpvf -)

#

Also having same effect:

cp -a /source/directory/* /dest/directory

Or:

cp —a /source/directory/* /source/directory/.[".]* /dest/directory
If there are hidden files in /source/directory.

bash$ echo "whatever" | cat -
whatever

Where a filename is expected, — redirects output to stdout (sometimes seen with tar c£f), or

accepts input from stdin, rather than from a file. This is a method of using a file—oriented utility as

a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command line, file fails with an error message.

Add a "-" for a more useful result. This causes the shell to await user input.

bash$ file -
abc
standard input: ASCII text

bash$ file -

Chapter 3. Special Characters

20

Advanced Bash-Scripting Guide

#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe st dout to other commands. This permits such stunts as prepending
lines to a file.

Using diff to compare a file with a section of another:
grep Linux filel | diff file2 -

Finally, a real-world example using — with tar.

Example 3—4. Backup of all files changed in last day

#!/bin/bash

Backs up all files in current directory modified within last 24 hours
#+ in a "tarball" (tarred and gzipped file).

BACKUPFILE=backup-$ (date +%m—-%d-%Y)

Embeds date in backup filename.

Thanks, Joshua Tschida, for the idea.
archive=${1:-$SBACKUPFILE}

If no backup-archive filename specified on command line,
#+ it will default to "backup-MM-DD-YYYY.tar.gz."

tar cvf - "find . -mtime -1 -type f -print® > Sarchive.tar
gzip $archive.tar
echo "Directory $PWD backed up in archive file \"S$archive.tar.gz\"."

Stephane Chazelas points out that the above code will fail
#+ 1f there are too many files found
#+ or if any filenames contain blank characters.

He suggests the following alternatives:

,,,
find . -mtime -1 -type f -print0 | xargs -0 tar rvf "S$Sarchive.tar"
using the GNU version of "find".

find . -mtime -1 -type f —-exec tar rvf "Sarchive.tar" '{}' \;

portable to other UNIX flavors, but much slower.

,,,
exit O

<1 Filenames beginning with "—" may cause problems when coupled with the "—"
redirection operator. A script should check for this and add an appropriate prefix to
such filenames, for example . /-FILENAME, $SPWD/-FILENAME, or
SPATHNAME /-FILENAME

If the value of a variable begins with a —, this may likewise create problems.

Chapter 3. Special Characters 21

Advanced Bash-Scripting Guide

var="-n"
echo S$var
Has the effect of "echo -n", and outputs nothing.

previous working directory. A cd — command changes to the previous working directory. This uses

the $OLDPWD environmental variable.

<1> Do not confuse the "—" used in this sense with the redirection operator just
discussed. The interpretation of the "—" depends on the context in which it appears.

" n

Minus. Minus sign in an arithmetic operation.

Equals. Assignment operator

a=28
echo $a # 28
n_mn

In a different context, the "=" is a string comparison operator.

+
Plus. Addition arithmetic operator.
In a different context, the + is a Regular Expression operator.
+
Option. Option flag for a command or filter.
Certain commands and builtins use the + to enable certain options and the — to disable them.
%
moduloe. Modulo (remainder of a division) arithmetic operation.
In a different context, the % is a pattern matching operator.
home directory [tilde]. This corresponds to the SHOME internal variable. ~bozo is bozo's home
directory, and Is ~bozo lists the contents of it. ~/ is the current user's home directory, and Is ~/ lists the
contents of it.
bash$ echo ~bozo
/home /bozo
bash$ echo ~
/home /bozo
bash$ echo ~/
/home/bozo/
bash$ echo ~:
/home/bozo:
bash$ echo ~nonexistent-user
~nonexistent-user
~+

current working directory. This corresponds to the SPWD internal variable.

previous working directory. This corresponds to the SOLDPWD internal variable.

Chapter 3. Special Characters 22

Advanced Bash-Scripting Guide

regular expression match. This operator was introduced with version 3 of Bash.

beginning—of-line. In a regular expression, a """ addresses the beginning of a line of text.
Control Characters

change the behavior of the terminal or text display. A control character is a CONTROL + key

combination (pressed simultaneously). A control character may also be written in octal or

hexadecimal notation, following an escape.

Control characters are not normally useful inside a script.
0Ctl-B

Backspace (nondestructive).
Q
ctl-C

Break. Terminate a foreground job.
0
Ctl-D

Log out from a shell (similar to gxit).
"EOF" (end of file). This also terminates input from stdin.
When typing text on the console or in an xterm window, Ct1-D erases the character under
the cursor. When there are no characters present, Ct1-D logs out of the session, as expected.
In an xterm window, this has the effect of closing the window.
0ctl-G
"BEL" (beep). On some old—time teletype terminals, this would actually ring a bell.
0
Ctl-H

"Rubout" (destructive backspace). Erases characters the cursor backs over while backspacing.

#!/bin/bash
Embedding Ctl-H in a string.

a=""H"H" # Two Ctl-H's —-- backspaces
ctl-V ctl-H, using vi/vim
echo "abcdef" # abcdef
echo
echo -n "abcdef$a " # abcd f
Space at end * ~ Backspaces twice.
echo
echo -n "abcdefs$a" # abcdef
No space at end ~ Doesn't backspace (why?).

Results may not be quite as expected.
echo; echo

Constantin Hagemeier suggests trying:

#
a=$'\010\010"
a=$'\b\b'

Chapter 3. Special Characters 23

Advanced Bash-Scripting Guide

a=$"'\x08\x08"
But, this does not change the results.

¢ctl-I

Horizontal tab.
dctl-J

Newline (line feed). In a script, may also be expressed in octal notation —— "\012' or in
hexadecimal — \x0a'.
¢ Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ct 1-K erases from the character
under the cursor to end of line. Within a script, Ct1-K may behave differently, as in Lee Lee
Maschmeyer's example, below.

¢Ctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same effect as the clear
command. When sent to a printer, a Ct1-L causes an advance to end of the paper sheet.

0
Ctl-M

Carriage return.

#!/bin/bash
Thank you, Lee Maschmeyer, for this example.

read -n 1 -s —p \

$'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
Of course, '0d' is the hex equivalent of Control-M.

echo >&2 # The '-s' makes anything typed silent,
#+ so it is necessary to go to new line explicitly.

read -n 1 -s -p $'Control-J leaves cursor on next line. \x0a'
'Oa' is the hex equivalent of Control-J, linefeed.
echo >&2

#H4#

read -n 1 -s -p $'And Control-K\x0Obgoes straight down.'
echo >&2 # Control-K is vertical tab.

A better example of the effect of a vertical tab is:

var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'

echo "Svar"

This works the same way as the above example. However:

echo "Svar" | col

This causes the right end of the line to be higher than the left end.
It also explains why we started and ended with a line feed —-

#+ to avoid a garbled screen.

As Lee Maschmeyer explains:

In the [first vertical tab example] . . . the vertical tab
#+ makes the printing go straight down without a carriage return.

Chapter 3. Special Characters 24

Advanced Bash-Scripting Guide

This is true only on devices, such as the Linux console,
#+ that can't go "backward."
The real purpose of VT is to go straight UP, not down.
It can be used to print superscripts on a printer.
The col utility can be used to emulate the proper behavior of VT.
exit O
dctl-Q
Resume (XON).
This resumes stdin in a terminal.
dctl-s
Suspend (XOFF).

This freezes st din in a terminal. (Use Ctl-Q to restore input.)
¢ctl-u

Erase a line of input, from the cursor backward to beginning of line. In some settings, Ct1-U
erases the entire line of input, regardless of cursor position.
¢Cctl-v

When inputting text, Ct 1-V permits inserting control characters. For example, the following
two are equivalent:

echo -e '\x0a'

echo <Ctl-V><Ctl-J>

Ct1-V is primarily useful from within a text editor.
0Cctl-w

When typing text on the console or in an xterm window, Ct 1-W erases from the character
under the cursor backwards to the first instance of whitespace. In some settings, Ct1-W
erases backwards to first non—alphanumeric character.

0ctl-z

Pause a foreground job.
Whitespace
functions as a separator, separating commands or variables. Whitespace consists of either spaces,
tabs, blank lines, or any combination thereof. [15] In some contexts, such as variable assignment,
whitespace is not permitted, and results in a syntax error.

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections.

$IFS, the special variable separating fields of input to certain commands, defaults to whitespace.

To preserve whitespace within a string or in a variable, use quoting.

Chapter 3. Special Characters 25

Chapter 4. Introduction to Variables and
Parameters

Variables are how programming and scripting languages represent data. A variable is nothing more than a
label, a name assigned to a location or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

4.1. Variable Substitution

The name of a variable is a placeholder for its value, the data it holds. Referencing its value is called variable
substitution.

$

Let us carefully distinguish between the name of a variable and its value. If variablel is the name
of a variable, then $variablel is a reference to its value, the data item it contains. [16]

bash$ variable=23

bash$ echo variable
variable

bash$ echo $variable
23

The only time a variable appears "naked" —— without the $ prefix —— is when declared or assigned,
when unset, when exported, or in the special case of a variable representing a signal (see Example
29-5). Assignment may be with an = (as in var1=27), in a read statement, and at the head of a loop
(for var2 in 1 2 3).

nn

Enclosing a referenced value in double quotes (" ") does not interfere with variable substitution. This
is called partial quoting, sometimes referred to as "weak quoting." Using single quotes (' ') causes the
variable name to be used literally, and no substitution will take place. This is full quoting, sometimes
referred to as "strong quoting." See Chapter 5 for a detailed discussion.

Note that $variable is actually a simplified alternate form of ${variable}. In contexts where
the $variable syntax causes an error, the longer form may work (see Section 9.3, below).

Example 4-1. Variable assignment and substitution

#!/bin/bash
ex9.sh

Variables: assignment and substitution

a=375
hello=S$a

Chapter 4. Introduction to Variables and Parameters 26

Advanced Bash-Scripting Guide

No space permitted on either side of = sign when initializing variables.
What happens if there is a space?

"VARIABLE =value"

A

#% Script tries to run "VARIABLE" command with one argument, "=value".
"VARIABLE= value"

A

#% Script tries to run "value" command with

#+ the environmental variable "VARIABLE" set to "".

echo hello # hello
Not a variable reference, just the string "hello"

echo S$hello # 375

~ This *is* a variable reference.
echo ${hello} # 375

Also a variable reference, as above.

Quoting .
echo "S$Shello" # 375
echo "${hello}" # 375

echo

hello="A B C D"

echo $hello # A BCD

echo "Shello" # A B C D

As you see, echo S$hello and echo "Shello" give different results.
Why?

#
Quoting a variable preserves whitespace.
#

echo

echo 'Shello' # Shello

A A

Variable referencing disabled (escaped) by single quotes,
#+ which causes the "$" to be interpreted literally.

Notice the effect of different types of quoting.

hello= # Setting it to a null value.

echo "\Shello (null value) = Shello"

Note that setting a variable to a null value is not the same as
#+ unsetting it, although the end result is the same (see below) .

It is permissible to set multiple variables on the same line,
#+ 1f separated by white space.
Caution, this may reduce legibility, and may not be portable.

varl=21 var2=22 var3=$V3

echo
echo "varl=S$varl var2=$var?2 var3=Svar3"

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide

May cause problems with older versions of "sh"

echo; echo

numbers="one two three"

A A
other_ numbers="1 2 3"
AN A

If there is whitespace embedded within a variable,
#+ then quotes are necessary.

other numbers=1 2 3 # Gives an error message.
echo "numbers = $numbers"

echo "other numbers = S$Sother numbers" # other_numbers = 1 2 3
Escaping the whitespace also works.

mixed_bag=2\ ---\ Whatever

" ~ Space after escape (\).

echo "Smixed_bag" # 2 ——— Whatever

echo; echo

echo "uninitialized_variable = Suninitialized_variable"
Uninitialized variable has null value (no value at all!).
uninitialized_variable= # Declaring, but not initializing it -—-

#+ same as setting it to a null value, as above.
echo "uninitialized_variable = Suninitialized_variable"

It still has a null value.

uninitialized_variable=23 # Set it.
unset uninitialized_variable # Unset it.
echo "uninitialized_variable = Suninitialized_variable"
It still has a null value.
echo
exit O

An uninitialized variable has a "null" value — no assigned value at all (not zero!).
Using a variable before assigning a value to it will usually cause problems.

It is nevertheless possible to perform arithmetic operations on an uninitialized
variable.

echo "Suninitialized" # (blank line)
let "uninitialized += 5" # Add 5 to it.
echo "Suninitialized" # 5

Conclusion:

An uninitialized variable has no value,

#+ however it acts as if it were 0 in an arithmetic operation.
This is undocumented (and probably non-portable) behavior.

See also Example 14-23.

Chapter 4. Introduction to Variables and Parameters 28

Advanced Bash-Scripting Guide

4.2. Variable Assignment

the assignment operator (no space before and after)
¢ 1 Do not confuse this with = and —eq, which test, rather than assign!

Note that = can be either an assignment or a test operator, depending on context.

Example 4-2. Plain Variable Assignment

#!/bin/bash
Naked variables

echo

When is a variable "naked", i.e., lacking the '$' in front?
When it is being assigned, rather than referenced.

Assignment
a=879
echo "The value of \"a\" is $a."

Assignment using 'let'
let a=16+5
echo "The value of \"a\" is now $a."

echo

In a 'for' loop (really, a type of disguised assignment) :
echo -n "Values of \"a\" in the loop are: "
for a in 7 8 9 11
do
echo -n "S$a "
done

echo
echo

In a 'read' statement (also a type of assignment) :
echo -n "Enter \"a\" "

read a

echo "The value of \"a\" is now $a."

echo

exit O

Example 4-3. Variable Assignment, plain and fancy

#!/bin/bash
a=23 # Simple case

echo $a
b=$a

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide
echo $b

Now, getting a little bit fancier (command substitution).

a="echo Hello!" # Assigns result of 'echo' command to 'a'
echo $a
Note that including an exclamation mark (!) within a

#+ command substitution construct #+ will not work from the command line,
#+ since this triggers the Bash "history mechanism."
Inside a script, however, the history functions are disabled.

a="1ls -1° # Assigns result of 'ls -1' command to 'a'

echo $Sa # Unquoted, however, removes tabs and newlines.
echo

echo "S$Sa" # The quoted variable preserves whitespace.

S

(See the chapter on "Quoting.")

exit O

Variable assignment using the $(...) mechanism (a newer method than backquotes). This is actually a
form of command substitution.

From /etc/rc.d/rc.local
R=$ (cat /etc/redhat-release)
arch=$ (uname -m)

4.3. Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by "type". Essentially, Bash
variables are character strings, but, depending on context, Bash permits integer operations and comparisons on
variables. The determining factor is whether the value of a variable contains only digits.

Example 4—-4. Integer or string?

#!/bin/bash
int-or-string.sh: Integer or string?

a=2334 # Integer.

let "a += 1"

echo "a = $a " # a = 2335

echo # Integer, still.

b=${a/23/BB} # Substitute "BB" for "23".
This transforms $b into a string.
echo "b = S$b" # b = BB35
declare -i b # Declaring it an integer doesn't help.
echo "b = S$b" # b = BB35
let "b += 1" # BB35 + 1 =
echo "b = $b" # b =1
echo
c=BB34
echo "c = $c" # ¢ = BB34

Chapter 4. Introduction to Variables and Parameters 30

Advanced Bash-Scripting Guide

d=${c/BB/23} # Substitute "23" for "BB".
This makes $d an integer.

echo "d = sd" # d = 2334

let "d += 1" # 2334 + 1 =

echo "d = sd" # d = 2335

echo

What about null variables?
e="n"

echo "e = se" # e =

let "e += 1" # Arithmetic operations allowed on a null variable?
echo "e = $e" #e=1

echo # Null variable transformed into an integer.

What about undeclared variables?

echo "f = S$f" # £ =

let "f += 1" # Arithmetic operations allowed?

echo "f = S$f" # £ =1

echo # Undeclared variable transformed into an integer.

Variables in Bash are essentially untyped.

exit O

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting (enough rope to
hang yourself!) and make it easier to grind out lines of code. However, they permit errors to creep in and
encourage sloppy programming habits.

The burden is on the programmer to keep track of what type the script variables are. Bash will not do it for
you.

4.4. Special Variable Types

local variables

variables visible only within a code block or function (see also local variables in functions)
environmental variables

variables that affect the behavior of the shell and user interface

- In a more general context, each process has an "environment", that is, a group of
variables that hold information that the process may reference. In this sense, the shell
behaves like any other process.

Every time a shell starts, it creates shell variables that correspond to its own
environmental variable