
Disable Directory Listing

Options -Indexes

The first line sets the environment up to follow symbolic links using the

Options directive. This may or may not be necessary, but some web hosts use

symlinks (similar to alias in MacOSX or shortcuts is Windows) for common

HTTP request errors and these are usually symlinked files, or at least this

is how I understand the reasoning.

Options +FollowSymLinks

Use the Rewrite Engine

RewriteEngine On

The next two lines are very, very important it restricts rewriting URLs only

to paths that do not actually exists. This prevents the rules below from

matching example.com/images/logo.png for example. The first prevents

existing directories with the !-d flag and the second with !-f means ignore # existing

files.

RewriteCond %{SCRIPT_FILENAME} !-d

RewriteCond %{SCRIPT_FILENAME} !-f

The next three lines are the actual URL rewriting commands. Each line

creates a rule that tries to match a regular expressions pattern against the

incoming URL. Regular expressions, at least for me, are a hard set of rules

to remember but I always find it helpful to use this tutorial

<http://blog.themeforest.net/screencasts/regular-expressions-for-dummies/>

by Nettut’s own Jeffery Way and the tool <http://gskinner.com/RegExr/> he

recommends. I found it easy to type in sample URLs we want to match and the

try to hack together the pattern.

#

The first argument is the pattern, between the caret and dollar sign. We

tell Apache we want URLs asking for the users directory (an artificial

directory, doesn’t have to actually exist) followed by a / and any length of

numbers. The parenthesis create a capture group, you can use as many of

these as you want, they serve as variables that we can then transplant into

our rewrite. The asterisk means the user can enter whatever they want, and

it won’t affect the rewrite, this is primarily to handle a trailing slash so

example.com/users/123 is the same as example.com/users/123/ as users would

expect.

#

The second argument is the path we want to actually call, this unlike the

The second argument is the path we want to actually call, this unlike the

first must be a real file. We tell Apache to look in the current directory

for a file called profile.php and send the parameter id=$1 along with it.

Remember the capture group earlier? That is where we get the variable $1,

capture groups start at one. This creates a URL on the server like

example.com/profile.php?id=123.

RewriteRule ^(.*/?$) public-index.php?p=$1

For Products

#RewriteRule ^product/(.*/?$) ./system/views/product.php?p=$1

#RewriteRule ^product/(.*/?$) ./shadow/system/views/product.php?p=$1

<IfModule mod_rewrite.c>

For sales:

RewriteRule ^shop/sales/?$ sales.php

For the primary categories:

RewriteRule ^shop/([A-Za-z\+]+)/?$ shop.php?type=$1

For specific products:

RewriteRule ^browse/([A-Za-z\+\-]+)/([A-Za-z\+\-]+)/([0-9]+)$ browse.php?

type=$1&category=$2&id=$3

</IfModule>

force url to lowercase if upper case is found

RewriteCond %{REQUEST_URI} [A-Z]

ensure it is not a file on the drive first

RewriteCond %{REQUEST_FILENAME} !-s

RewriteRule (.*) rewrite-strtolower.php?rewrite-strtolower-url=$1 [QSA,L]

